
Formal Development of a Graphical User Interface for aRadiation Therapy MachineJonathan Jacky �Jonathan UngerRadiation Oncology Department RC-08University of WashingtonSeattle, WA 98195Submitted to:ZUM '95 Ninth International Conference of Z UsersNovember 23, 1994
AbstractWe wrote a formal speci�cation in Z for the graphical user interface of a radiationtherapy machine. We implemented our speci�cation in a Pascal dialect on a workstationthat uses the X window system to manage the keyboard and display. We initiallymodel the user interface as a collection of separate Z operation schemas correspondingto sections in the informal prose requirements document. From these we derive a statemachine model, represented as a state transition table whose entries are schema namesfrom the Z speci�cation. Our state transition table format compactly represents nestedstates that are modelled in Z by schema inclusion. We implement each table entryas a Pascal function or procedure. We also implement a dispatcher that selects theproper state transition whenever any X event occurs; our dispatcher is the X eventloop. Our dispatcher is a table-driven interpreter that can handle any state transitionsystem expressed in the format we de�ned. We model the dispatcher in Z and formallyderive some of its code.�email jon@radonc.washington.edu, telephone (206)-548-4117, fax (206)-548-6218

c1994 by Jonathan Jacky and Jonathan UngerThis work may not be copied or reproduced in whole or part for any commercial purpose.Permission to photocopy in whole or part without payment of fee is granted for nonpro�teducational and research purposes provided that all such copies include the following notice:a notice that such copying is by permission of the authors; an acknowledgment of the authorsof the work; and all applicable portions of this copyright notice. All rights reserved.

1 IntroductionThe Clinical Neutron Therapy System at the University of Washington is a cyclotron andtreatment facility that provides particle beams for cancer treatments with fast neutrons,production of medical isotopes, and physics experiments. This paper concerns the controlprogram for the operator's console that therapists use to set up and deliver treatments topatients. The programmable part of the console is a workstation that runs a commercialreal-time operating system [2] and uses the X window system to manage the keyboard anddisplay [11, 12]. This console is just one component of a large control system that includesseveral computers and many non-programmable elements. The delegation of functionsamong the software and hardware components is described elsewhere [7, 8].2 Why use a formal notation?We already have a thorough description of our system in prose and pictures that the usersconsider to be complete [8]. Why go to all the e�ort of writing a second description of thesame behaviors in Z [13]?Safety issues motivate much of our formalization e�ort [4, 5, 6]. We want to show that ourmachine meets generic requirements for safety and completeness such as those proposed byJa�e, et al [10].In this paper we emphasize the use of Z as a detailed design notation and show how wederive program code from Z texts. We observe that the informal description of the userinterface is repetitious; many operations work almost the same way. We see an opportunityto make the program small by factoring out common features and similar behaviors. Thisfactoring out is only suggested by the prose description; in Z we make it explicit. The Ztexts are no mere transliteration of the prose requirements. They are a di�erent expressionof the same behaviors, in a form that is more concise and better organized to serve as aguide for programming.We formalize only those aspects of the the user interface which are pertinent to this designtask. We do not attempt to treat \look and feel" aspects such as the appearance of thedisplay. They are already described in su�cient detail in the informal requirements [8].
1

3 Informal requirementsThe purpose of the treatment console program is to help ensure that patients are treated cor-rectly, as directed by their prescriptions. The treatment console computer stores a databaseof prescriptions for many patients. Each patient's prescription usually includes several dif-ferent beam con�gurations called �elds. Each �eld is de�ned by many machine settings thatmust be set properly to deliver each prescribed treatment. The console program enables theoperator to choose patients and �elds from the prescription database, and ensures that theradiation beam can only turn on (through a separate nonprogrammable subsystem) whenthe prescribed settings for the chosen �eld have been achieved.The informal requirements for the console program, including but not limited to its userinterface, comprise 45 pages of prose and diagrams (chapter 8 in [8]) which describe theactivities associated with about a dozen di�erent screens. For example, Fig. 1 shows the�elds available for the currently selected patient, and Fig. 2 shows information about thetwo dosimeters (which are replicated for safety) as well as some safety interlocks. Operatorsselect these screens by pressing dedicated function keys, and can also position a cursor overparticular items on each screen and select them (for example to choose one of the �eldsshown in Fig. 1 in order to load its prescribed settings). Operators can also enter or modifyvalues for some items after they select them, by typing at the workstation keyboard.4 Formal modelA 17 page section in [9] provides a formal de�nition for the user interface to every op-eration described in the prose requirements [8]. This section includes about 450 lines ofZ text (expressed as LaTEXsource) divided between about 50 schemas and some axiomaticde�nitions. The following summary is simpli�ed for brevity.Each operation from the prose is modelled by one or more Z operation schemas on theConsole state. The display state variable indicates which of the screen designs (such asthose shown in Figs 1 and 2) is currently visible. The edit state variable indicates whatkind of user interaction is currently in progress: it is idle when no interaction is in progressand the console is waiting for input, editing when the user is entering or modifying a valueand the console is waiting for the user to type a character, etc. The item state variableindicates the name (not the value) of the item which is being modi�ed, while bu�er modelsthe (possibly incomplete) string that the user edits. Most operations are only Availablewhen editing is not already in progress; otherwise, the console is Engaged .EDIT ::= idle j editing j : : : 2

'

&

$

%

OPERATOR: Adam Smith PATIENT: Test Patient FIELD: NoneGANTRY/PSA FILTER/WEDGE LEAFCOLLIM DOSI-METRY THERAPYINTLKS PROTONBEAMFIELDSField Fractions To date MU Total Expected To date1 Anterior 16 12 122 1952 1464 14642 Left Lateral 16 12 139 2224 1668 16683 Posterior 16 11 124 1984 1364 13644 Right Lateral 16 11 135 2160 1485 1413

Figure 1: Fields display
3

'

&

$

%

OPERATOR: Adam Smith PATIENT: Test Patient FIELD: PosteriorGANTRY/PSA FILTER/WEDGE LEAFCOLLIM DOSI-METRY THERAPYINTLKS PROTONBEAMDOSIMETRYSETTING PRESCR PRESET ACCUM STATUSDOSE A 105.0 105.0 000.0 DMC Self-test in progressDOSE B 105.0 105.0 000.0 Dosimetry Not ReadyTIME 2.09 2.09 0.00THERAPY INTERLOCKSDosimetry Check & Con�rm Line Released Gantry/PSA Motion
Figure 2: Dosimetry and interlocks display

4

Consoledisplay : DISPLAYedit : EDITitem : NAMEbu�er : STRING: : :Available b= [Console j edit = idle]Engaged b= [Console j edit 2 f editing ; : : : g]Operations occur whenever the user provides input at the workstation by typing or pressinga function key (we do not use the workstation \mouse"). Every input event is modelled bythe Event operation schema. Each value of INPUT represents a di�erent X event, but wecan ignore many of them.Event�Consoleinput? : INPUTIgnore b= Event ^ �ConsoleWhen the console is Available, the user may select a new display by pressing a functionkey (for example to choose one of the displays shown in Figs. 1 or 2, among others). Weneed a function name to associate the input? (the function key that the user presses) withthe name of the DISPLAY that the user wants to see. The newly selected display 0 appearsand console remains Available. Here we do not need to model the details of updating thedisplay contents.SelectDisplayEventAvailableAvailable 0name input? 2 DISPLAYdisplay 0 = name input?The SelectDisplay operation schema corresponds to a single operation in the informal prosedescription. Other operations from the informal description must be modelled as several Zoperations. Each editing operation is modelled as at least three Z operations: one to beginEdit ing (when the user presses an appropriate function key), another to Get each keystroke5

and modify the bu�er (usually just by adding the new character to the end), and a third toAccept the new value when editing is �nished (signalled when the user types a terminatorcharacter, such as the RETURN key).EditEventAvailableEngaged 0bu�er 0 = emptydisplay 0 = displayGetEventEngagedEngaged 0bu�er 0 = modify bu�er input?display 0 = displayitem 0 = itemAcceptEventEngagedAvailable 0input? 2 terminatorbu�er 0 = bu�erdisplay 0 = displayEdit and Accept are building blocks; we specialize them to describe particular editing opera-tions. The simplest example occurs when the operator types a message to annotate an eventlog (which is mostly written automatically). The user presses the WRITE LOG MESSAGEfunction key to invoke the EditMessage operation, a specialization of Edit . This results inthe EditingMessage state:EditMessageEditinput? = log messageitem 0 = name log message 6

EditingMessage b= [Engaged j item = name log message]As the user types, Get collects characters in bu�er . When the user types a terminatorcharacter, the WriteMessage operation, a specialization of Accept , writes the completedmessage! to the event log.WriteMessageAcceptmessage! : STRINGEditingMessagemessage! = bu�erMost editing operations work in a similar fashion, but the values that they collect changethe underlying machine state instead of merely appearing in a �le.5 Combining the operationsThe Z texts in Section 4 do not describe any explicit control structure that invokes operationswhen they are requested. We must design and implement this control structure. We beginby combining all top-level operations into a single ConsoleOp schema (not including buildingblocks such as Event , Edit and Accept which are only used to de�ne other operations).ConsoleOp b= SelectDisplay _ EditMessage _WriteMessage _ : : : _ IgnoreOthersThis ConsoleOp operation is invoked whenever the user provides any input (keypress). Thecontrol structure is implicit in the preconditions of all the constituent operations. We havetried to de�ne each of these so that the precondition of exactly one is satis�ed each timeConsoleOp is invoked. IgnoreOthers is the default do-nothing operation whose preconditionis the negation of the disjunction of the preconditions of all the other operations.6 State transition tableThe ConsoleOp operation de�nes a �nite-state machine where each of the constituent opera-tion schemas describes a single transition. (Any state machine constructed from Z operationschemas in this way is a Mealy machine whose outputs are associated with state transitions.The analyses of Ja�e, et al. [10] are based on a Mealy model.) Table 1 shows the state tran-sition table derived from the Z texts in [9] (which are more complicated than the simpli�edexcerpts presented in Section 4). We developed code that can interpret any state machine7

State Input Operationkey = locked (all inputs) LockedAvailable name input? 2 DISPLAY SelectDisplayinput? = log message TypeMessagerun = running input? = cancel run SelectCancelRun- -Setup input? = auto setup AutoSetupinput? = expt mode ExptModeinput? = store �eld EditFieldinput? = edit setting SelectSettinginput? = override cmd SelectOverrideinput? = logout LogoutListingPatients name input? 2 ran patients SelectPatient- -ListingFields name input? 2 dom �elds SelectField(other inputs) IgnoreEngaged input? 2 CHAR Get: LoggedOut input? = cancel CancelEditingCancel input? = con�rm CancelRun- -TypingMessage input? 2 terminator WriteMessage- -EditingField input? 2 terminator StoreField- -EditingSetting input? 2 terminator StoreSetting- -Overriding input? = con�rm Override- -LoggedOut input? 2 terminator Logininput? = cancel NoCancel(other inputs) Ignore
Table 1: User interface state transition table.8

that is expressed in this tabular form, not just the particular state machine de�ned by theoperations in [9]).This table-driven interpreter (or dispatcher) is our alternative to the usual way to implementevent-driven X programs, which is to code a a large case statement with a case branch foreach event [11].1 Our method has advantages when many of the events must be handled ina similar, but not exactly identical, fashion. In such cases our method results in code that isshorter. We also feel it is clearer (and should be easier to modify) because the factoring-outof similar features that appears in the Z texts is expressed in exactly the same way in theprogram code.We build Table 1 by listing all of the operation schemas that are combined in ConsoleOp.These determine the contents (but not the order) of the third column. Then we extract thepreconditions of each. We determined the preconditions by inspection, not by performingthe Z precondition calculation described in [13]. Preconditions on input? are listed in themiddle column, while those involving other state variables are listed in the �rst column. Inour table, sequence order and indentation represent the nesting of states that is expressedin Z by schema inclusion.The precondition states in the �rst column are indicated by the names of the Z state schemasfrom [9] where they are de�ned. Solid double lines separate the mutually exclusive stateskey = locked , Available and Engaged . Solid single lines, together with indentation, indicatethat the table entries enclosed between them are substates of preceding entries. The fullprecondition of a substate is formed by conjoining the preconditions of the preceding entriesat lesser indentation. For example, the full precondition of the substate on the row withListingPatients in the �rst column is Available ^ Setup ^ ListingPatients . This conjunctionis the precondition given in [9] for the SelectPatientC operation, that appears in the thirdcolumn of the same row. When the �rst column in a row is blank, the substate is thesame as the last preceding nonblank column: the precondition for the Logout operation isAvailable ^ Setup.Dotted lines separate mutually exclusive substates. Thus run = running and Setup indicatemutually exclusive substates of Available, and ListingPatients and ListingFields indicatemutually exclusive substates of Setup.The inputs in the middle column are expressed as predicates on the variable input?. Theright column lists the operation schemas that de�ne the next state, as well as any outputs.Each line also applies to any included substates, so name input? 2 DISPLAY elicits theSelectDisplay operation in the Available state, and also in its substates run = running ,Setup, and in its sub-substates ListingPatients and ListingFields.1Bowen [1] modelled some display aspects of the X window system in Z, but did not consider eventhandling. 9

Our table suggests an e�cient implementation. It should only be necessary to test eachdistinct state precondition once. It should not be necessary to test preconditions of substatesthat are indented under states whose preconditions have been found to be false.7 Formalizing the state transition tableTo develop a program that interprets the state transition table, we must express its meaningformally. Each entry in the table is described by the Transition schema. The indentationof each row is indicated by an integer nesting depth. The state and input preconditionsin the �rst and second columns are indicated by predicates expressed as unary relationson Console and INPUT , respectively. The operations in the third column of the table aremodelled by functions on Console states. Table 1 is modelled by t , a sequence of theserecords.Transitiondepth : state : �Consolein : � INPUTop : Console� Consolet : seqTransitionHere are some excerpts from Table 1 in Z syntax. The entry for t 6 shows how we modelrows in Table 1 where the �rst column is blank: we set the state in the Transition recordto the empty set, �.(t 1):depth = 0(t 1):state = fConsole j key = locked � �Console g(t 1):in = f input? : INPUT j true g(t 1):op = fLocked � (�Console; �Console 0) g(t 5):depth = 1(t 5):state = fSetup � �Console g(t 5):in = f input? : INPUT j input? = auto setup g(t 5):op = fAutoSetupC � (�Console; �Console 0) g(t 6):depth = 1(t 6):state = �(t 6):in = f input? : INPUT j input? = expt mode g(t 6):op = fExptModeC � (�Console; �Console 0) g10

8 Interpreting the state transition tableIn this section we formally de�ne the core of interpreter: the transition function that takesany Console state and input? into a new Console state. The table t is a parameter of thisfunction.We interpret the table by traversing it from top to bottom, searching for an entry whichis enabled . We say an entry is enabled if its full state precondition is satis�ed: this is truewhen the precondition given in the �rst column of the entry is satis�ed, and all the nearestpreceding entries at lesser indentations are enabled as well. If the �rst column entry isblank, the entry is enabled if the immediately preceding entry is enabled.We de�ne a unary pre�x relation e on table entries; e(i) is true if table entry i is enabled.The unary pre�x relation edd(i) describes the e�ect of sequence order and indentation; itis true if all the nearest preceding entries at lesser indentation are enabled. For e(i) to betrue, edd(i) must be true. Its de�nition uses the binary pre�x relation ed(i ; d), which istrue when the nearest entry indented at depth d that precedes entry i is enabled, or if thereis no such preceding entry.e ; edd : �(dom t)ed : dom t#8 i : dom t �(8 d : � (let ds == f j : 1 : : i � 1 j (t j):depth = d g �ed(i ; d) , e(max ds) _ ds = �)) ^(let d == (t i):depth �edd(i) , (8 dd : 0 : : d � 1 � ed(i ; dd))) ^(8 c : Console �e(i), edd(i) ^ (((t i):state = � ^ e(i � 1))_ ((t i):state 6= � ^ c 2 (t i):state)))When we have found an enabled entry, we test whether the input precondition given in thesecond column is also satis�ed. If it is, we say the transition has triggered . We then applythe function given in the third column to obtain the new state. If no entries are triggered,the new state is the same as the old state.transition : (Console � INPUT)" Console8 input? : INPUT ; c : Console �transition(c; input?) =if 9 i : dom t � e(i) ^ input? 2 (t i):in then (t i):op c else c11

A single application of the transition function is the processing of a single input event. Itis expressed by the ConsoleOp1 operation:ConsoleOp1 b= [Event j �Console 0 = transition(�Console; input?)]If the table t is constructed properly, this operation is the same as the ConsoleOp we de�nedin section 5. In other words, ConsoleOp1 is a re�nement of ConsoleOp.The re�nement is correct because each entry in t corresponds to one disjunct in ConsoleOp.The only subtle point involves the preconditions of the substates (the indented table entries).The precondition of a substate is the conjunction of the condition listed in the substate'sown table entry, and all the conditions listed in the nearest preceding entries at lesserindentation. We have expressed this formally by including edd in the de�nition of e.9 Simplifying the interpreterThe formal de�nition of transition expresses our intent, but is not ready for translation toan executable program. The de�nition of e includes predicates about sets and quanti�ers.Implementing these directly would result in a complicated, ine�cient program. We caneliminate them.The de�nition of e says that all nearest preceding entries at lesser indentation must beenabled. This holds only if no such entry is not enabled. We only need to keep track ofa single preceding disabled entry: the one which is least indented. We record its depth ofindentation dd .When traversing the table, we may encounter sequences of disabled entries, where indentedentries are disabled because preceding entries at lesser depth are also disabled. Our ddis the depth of the entry at the beginning of the most recently encountered sequence ofdisabled entries.It turns out to be more convenient to keep track of all the preceding entries, not just thosewhich are at a lesser depth than the current entry. The depth of the preceding entry dpmight be greater than the depth of the current entry d . The depths of all the precedingdisabled entries form the set dds, and dd is the smallest element in the set. If the depthof the current table entry d is not greater than dd , or if there are no preceding disabledentries (the set dds is empty), then the current entry can be enabled. We can express thisargument formally:
12

8 i : dom t � (let d == (t i):depth; dp == (t (i � 1)):depth � [De�ne d , dp]e(i)) edd(i) [De�nition of e(i)], (8 dd : 0 : : d � 1 � ed(i ; dd)) [De�nition of edd(i)], : (9 dd : 0 : : d � 1 � : ed(i ; dd)) [Predicate calculus], (let dds == f dd : 0 : : dp j : ed(i ; dd) g � [De�ne dds](0 : : d � 1) \ dds = � [De�nitions of ranges for ed , dds], dds = � _ d � 1 < min dds [Set theory, range arithmetic], dds = � _ d � min dds [Arithmetic, < vs. �], (let dd == min dds � dds = � _ d � dd))) [De�ne dd]This result is useful because we can easily keep track of the existence of dds and the value ofdd without maintaining an explicit representation of the whole set dds. The only predicatewe actually need to test in the implementation is the �nal one:dds = � _ d � ddThe dds = � condition occurs when we are not traversing a sequence of disabled entries, andthe d � dd condition occurs when we have just emerged from the end of such a sequence.10 Implementing the interpreterOur implementation language is a (nonstandard) Pascal dialect [3] that provides pointers tofunctions and procedures. This makes it easy to translate t and Transition, the declarationsfor the state transition table, from Z.2typeTransition = recorddepth: integer;state: ^function;in: ^function;op: ^procedure;end;var t: array[0..n] of Transition;2Actually, the syntax for pointing to functions and procedures is a bit more complicated than indicatedhere. 13

The state and in functions are implemented in Pascal as boolean functions that test theconsole state variables and the input, respectively, and return true if the preconditions aresatis�ed. Table entries whose �rst column is blank (as in the entries following Setup) areindicated by assigning the state pointer to nil. The op procedures are implemented asPascal procedures that perform the state changes (assignment statements) called for in theoperation schemas. Our op procedures do not check any preconditions, but rely on thestate and in functions for this.Our implementation of the transition function is presented here as a Pascal procedurewithout parameters; the table t , the input? and the Console state variables are all global.Its local variables derive from the formal development.function transition;var i: integer; f i index of current table entry ge: boolean; f e(i) current entry is enabled ged: boolean; f e(i � 1) preceding entry is enabled gempty: boolean; f dds = � no preceding disabled entries gd: integer; f d (t i):depth, depth of current table entry gdd: integer; f dd depth of least indented preceding disabled entry gtr: boolean; f e(i) ^ current entry is triggered gf input? 2 (t i):in gOur transition code tests each table entry in turn. Our Pascal dialect [3] provides a (non-standard) invoke function that executes a function or procedure indicated by a pointer.3This makes it easy to translate the formal de�nitions of e and transition from section 8. Weimplemenent p , q ^ r as if q then p := r else p := false instead of p := q and rin order to avoid the expense of evaluating r when q is false.3The actual syntax of invoke is a bit more complicated than shown here.

14

function transition;...while i < nf Invariant: dds = � _ dd = min dds : : : gif empty or (d <= dd) thenif (t[i].state = nil)then e := ed;else e := invoke(t[i].state)else e := false;if e then tr := invoke(t[i].in) else tr := false;if tr then invoke(t[i].op);f Maintain invariant g...This code is correct if the program variables satisfy their formal de�nitions when the assig-ment to e is made. This condition is the loop invariant: it must be true each time executionreaches the �rst if statement inside the while loop. We �rst establish the invariant by as-signing values to program variables before entering the loop. Then, each time e is assignedin the body of the loop, new values must also be assigned to other variables in order tomaintain the invariant. The only tricky part of the invariant is dds = � _ dd = min dds .To maintain this invariant, three conditions are pertinent: e(i), dds = �, and d � dd .In the following discussion the unprimed variables dd and dds represent the values at thetop of the loop when e is assigned, and the primed variables dd 0 and dds 0 represent thenew values assigned at the bottom of the loop, that will apply when e is assigned in thenext turn of the loop. The correct assignments to dd 0 and dds 0 = � can be determinedby a case analysis, shown in Table 2. A formal justi�cation of the case analysis appears inAppendix A.We only need to write code for cases where the new (primed) values dd 0 or dds 0 di�er fromtheir initial (unprimed) values. The analysis reveals three such cases, which are highlightedby boxes in the table: when a disabled entry is encountered after a sequence of enabledentries (case 5), when an enabled entry is encountered after a sequence of disabled entries(case 8), and when a disabled entry at lesser depth is encountered after a sequence ofdisabled entries at greater depth (case 7). Writing out the code for each case, we obtain
15

e(i) dds = � d � dd dds 0 = � dd 0false false false false(2) dd (3)true false false XX (4) XX (4)false true X (1) false (2,5) d (5)true true X (1) true(6) X (1)false false true false(2) d (7)true false true true (8) X (1)Table 2: Maintaining the invariant dds = � _ dd = min ddsf Maintain invariant gif (not e) and empty then begin empty := false; dd := d end; f case (5) gif (not e) and (not empty) and (d <= dd) then dd := d; f case (7) gif e and (not empty) and (d <= dd) then empty := true; f case (8) gWe only need to add a little loop machinery to complete the development. The completedtransition function appears in Fig. 3. The complete dispatcher is simply a loop that, oneach turn, removes one event from the head of the X event queue and calls transition.Almost all of the work in our application is done by code that lies outside the X eventloop: transition itself, and the state, in and op functions and procedures indicated bythe pointers in table t, that actually implement the schemas from [9]. This di�ers from thestyle of implementing X programs recommended in [11], where the event loop contains alarge case statement with a case branch for each event.In our implementation the dispatcher, including the transition function, the rest of theX event loop code, and table t comprise about n lines of Pascal code (including plentyof comments and blank lines). The functions and procedures that implement the schemascomprise another m lines.References[1] Jonathan P. Bowen. X: Why Z? Computer Graphics Forum, 11(4):221{234, October1992.[2] Digital Equipment Corporation, Maynard, Massachusetts. Introduction to VAXELN,October 1991. 16

[3] Digital Equipment Corporation, Maynard, Massachusetts. VAXELN: Pascal Program-ming Guide, December 1991.[4] Jonathan Jacky. Formal speci�cations for a clinical cyclotron control system. In MarkMoriconi, editor, Proceedings of the ACM SIGSOFT International Workshop on For-mal Methods in Software Development, pages 45{54, Napa, California, USA, May 9{111990. (Also in ACM Software Engineering Notes, 15(4), Sept. 1990).[5] Jonathan Jacky. Formal speci�cation and development of control system input/output.In J. P. Bowen and J. E. Nicholls, editors, Z User Workshop, London 1992, pages 95{108. Proceedings of the Seventh Annual Z User Meeting, Springer-Verlag, Workshopsin Computing Series, 1993.[6] Jonathan Jacky. Specifying a safety-critical control system in Z. In J. C. P. Woodcockand P. G. Larsen, editors, FME '93: Industrial-Strength Formal Methods, pages 388{402, Odense, Denmark, April 1993. First International Symposium of Formal MethodsEurope, Springer-Verlag. Lecture Notes in Computer Science 670.[7] Jonathan Jacky, Ruedi Risler, Ira Kalet, and Peter Wootton. Clinical neutron therapysystem, control system speci�cation, Part I: System overview and hardware organi-zation. Technical Report 90-12-01, Radiation Oncology Department, University ofWashington, Seattle, WA, December 1990.[8] Jonathan Jacky, Ruedi Risler, Ira Kalet, Peter Wootton, and Stan Brossard. Clinicalneutron therapy system, control system speci�cation, Part II: User operations. Tech-nical Report 92-05-01, Radiation Oncology Department, University of Washington,Seattle, WA, May 1992.[9] Jonathan Jacky and Jonathan Unger. Formal speci�cation of control software for a ra-diation therapy machine. Technical Report 94-07-01, Radiation Oncology Department,University of Washington, Seattle, WA, July 1994.[10] Matthew S. Ja�e, Nancy G. Leveson, Mats P. E. Heimdahl, and Bonnie E. Melhart.Software requirements analysis for real-time process control systems. IEEE Transac-tions on Software Engineering, 17(3):241{258, March 1991.[11] Adrian Nye. Xlib Programming Manual. O'Reilly and Associates, Inc., Sebastopol,CA, 1988.[12] R. W. Scheier and J. Gettys. The X window system. ACM Transactions on Graphics,5(2):79{109, 1986.[13] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, New York, secondedition, 1992. 17

function transition;var i: integer; f i index of current table entry ge: boolean; f e(i) current entry is enabled ged: boolean; f e(i � 1) preceding entry is enabled gempty: boolean; f dds = � no preceding disabled entries gd: integer; f d (t i):depth, depth of current table entry gdd: integer; f dd depth of least indented preceding disabled entry gdleq: integer; f d � dd beginning new sequence of disabled entries gtr: boolean; f e(i) ^ current entry is triggered gf input? 2 (t i):in gbegini := 0; ed := true; tr := false; empty := true;while (i < n) and (not tr) dobegind := t[i].depthdleq := d <= dd;f Invariant: dds = � _ dd = min dds gif empty or dleq thenif (t[i].state = nil)then e := ed;else e := invoke(t[i].state)else e := false;if e then tr := invoke(t[i].in) else tr := false;if tr then invoke(t[i].op);f Maintain invariant gif (not e) and empty then begin empty := false; dd := d end;if (not e) and (not empty) and dleq then dd := d;if e and (not empty) and dleq then empty := true;ed := e;i := i + 1;end;end; Figure 3: Completed transition function.18

A Maintaining the invariantThis section presents the justi�cations for the numbered entries in Table 2. Before workingthrough the table, we establish some generally useful results. It is convenient to packageup pertinent state variables, de�nitions and the loop invariant in the Loop schema. TheStep operation schema models the e�ect of executing the code at the end of the loop inFig 3 (after the comment, \Maintain invariant"). Note that the primed \after" variablesare de�ned automatically for us by the usual Z convention.Loopi : dom td ; dd : dds : �d = (t i):depthdds = f dd : 0 : : (t (i � 1)):depth j : ed(i ; dd) gdds = � _ dd = min ddsStep b= [�Loop j i 0 = i + 1]We consider all the formal text that follows to be within the scope of the de�nitions in Step.Now we can derive some results.A. The range of dds 0 is 0 : : d .max dds 0 � (t (i 0 � 1)):depth [Def'n of dds range, 0 naming convention]= (t ((i + 1)� 1)):depth [i 0 = i + 1]= (t i):depth [Arithmetic]= d [d = (t i):depth]B. The enabled state of the current entry becomes the enabled state of of the most recententry at its own depth: e(i), ed(i 0; d)(let ds 0 == f j : 1 : : i 0 � 1 j (t j):depth = d g � [Def'n of ed(i ; d) in section 8]e(i), e(max ds 0) [i 0 � 1 = i , i = max 1 : : i , def'n of d], ed(i ; d 0)) [De�nitions of e(i), ed(i ; d)]C. When an entry is not enabled, its depth becomes one of the preceding disabled depths:: e(i), d 2 dds 0.: e(i), : ed(i 0; d) [Result B], d 2 dds 0 [Result A, de�nitions of d , dds 0]19

D. When an entry is enabled, for subsequent entries the set of preceding disabled entriesis empty: e(i), dds 0 = �.e(i)) edd(i) [De�nition of e(i)], (8 dd : 0 : : d � 1 � ed(i ; dd)) [De�nition of edd(i)], (0 : : d � 1) \ dds 0 = � [De�nition of dds 0], dds 0 = � [A: dds 0 � 0 : : d , but C: d =2 dds 0]Now we can work through the entries in Table 2.1. When dds = � the value of dd doesn't matter. The invariant holds becausedds = �) (dds = � _ dd = min dds) [p) p _ q]X indicates this \don't care" condition. We only need six rows in the table, not eight.2. When an entry is disabled, its own depth must be one of the elements of dds 0, whichcannot be empty.: e(i)) dds 0 6= � [C: d 2 dds 0]3. When an entry is disabled but its own depth is greater than dd , then dd remains thesmallest element in dds 0.: e(i) ^ dds 6= � ^ d > dd [Entry in Table 2]) dds 0 = dds [fdg [C: d 2 dds 0, de�nition of dds 0]) dd = min dds 0 [dd < d], dd 0 = dd [De�nition of dd 0]4. Here the entry is enabled but its depth is greater than dd . This condition is impossiblebecause it contradicts the result about e(i) we derived in section 9.e(i) ^ dds 6= � ^ d > dd [Entry in Table 2], false [Section 9: e(i)) dds = � _ d � dd]Inspection of the code con�rms that this condition is prevented by the if : : : then: : : else : : : statement in the body of the loop. XX indicates this impossible condition.5. A disabled entry is �rst encountered when dds is empty. The depth of this entrybecomes the �rst | and necessarily the smallest | element in dds 0: e(i) ^ dds = � [Entry in Table 2]20

, dds 0 = fdg [C: d 2 dds 0]) dds 0 6= � ^ d = min dds 0 [Set theory, de�nition of min], dd 0 = d [De�nition of dd 0]6. If the entry is enabled and dds is empty, it remains so; dds 0 is empty, by result D.7. This disabled entry lies at lesser indentation depth than any nearest preceding disabledentry, so dd must be reassigned to maintain the invariant.: e(i) ^ d � dd [Entry in Table 2]) d = min dds 0 [C: d 2 dds 0, d � min dds], dd 0 = d [De�nition of dd 0]8. An enabled entry follows a disabled entry that was indented to an equal or greaterdepth. This signals the end of a sequence of nested disabled entries. By result D, dds 0should be emptied.This concludes the case analysis.

21

