Formal Development of a Graphical User Interface for a
Radiation Therapy Machine

Jonathan Jacky *
Jonathan Unger

Radiation Oncology Department RC-08
University of Washington
Seattle, WA 98195

Submitted to:
ZUM ’95 Ninth International Conference of Z Users

November 23, 1994

Abstract

We wrote a formal specification in Z for the graphical user interface of a radiation
therapy machine. We implemented our specification in a Pascal dialect on a workstation
that uses the X window system to manage the keyboard and display. We initially
model the user interface as a collection of separate Z operation schemas corresponding
to sections in the informal prose requirements document. From these we derive a state
machine model, represented as a state transition table whose entries are schema names
from the Z specification. Our state transition table format compactly represents nested
states that are modelled in Z by schema inclusion. We implement each table entry
as a Pascal function or procedure. We also implement a dispatcher that selects the
proper state transition whenever any X event occurs; our dispatcher is the X event
loop. Our dispatcher is a table-driven interpreter that can handle any state transition
system expressed in the format we defined. We model the dispatcher in Z and formally
derive some of its code.

“email jon@radonc.washington.edu, telephone (206)-548-4117, fax (206)-548-6218

©1994 by Jonathan Jacky and Jonathan Unger

This work may not be copied or reproduced in whole or part for any commercial purpose.
Permission to photocopy in whole or part without payment of fee is granted for nonprofit
educational and research purposes provided that all such copies include the following notice:
a notice that such copying is by permission of the authors; an acknowledgment of the authors
of the work; and all applicable portions of this copyright notice. All rights reserved.

1 Introduction

The Clinical Neutron Therapy System at the University of Washington is a cyclotron and
treatment facility that provides particle beams for cancer treatments with fast neutrons,
production of medical isotopes, and physics experiments. This paper concerns the control
program for the operator’s console that therapists use to set up and deliver treatments to
patients. The programmable part of the console is a workstation that runs a commercial
real-time operating system [2] and uses the X window system to manage the keyboard and
display [11, 12]. This console is just one component of a large control system that includes
several computers and many non-programmable elements. The delegation of functions
among the software and hardware components is described elsewhere [7, 8].

2 Why use a formal notation?

We already have a thorough description of our system in prose and pictures that the users
consider to be complete [8]. Why go to all the effort of writing a second description of the
same behaviors in Z [13]?

Safety issues motivate much of our formalization effort [4, 5, 6]. We want to show that our
machine meets generic requirements for safety and completeness such as those proposed by
Jaffe, et al [10].

In this paper we emphasize the use of Z as a detailed design notation and show how we
derive program code from Z texts. We observe that the informal description of the user
interface is repetitious; many operations work almost the same way. We see an opportunity
to make the program small by factoring out common features and similar behaviors. This
factoring out is only suggested by the prose description; in Z we make it explicit. The Z
texts are no mere transliteration of the prose requirements. They are a different expression
of the same behaviors, in a form that is more concise and better organized to serve as a
guide for programming.

We formalize only those aspects of the the user interface which are pertinent to this design
task. We do not attempt to treat “look and feel” aspects such as the appearance of the
display. They are already described in sufficient detail in the informal requirements [8].

3 Informal requirements

The purpose of the treatment console program is to help ensure that patients are treated cor-
rectly, as directed by their prescriptions. The treatment console computer stores a database
of prescriptions for many patients. Each patient’s prescription usually includes several dif-
ferent beam configurations called fields. Each field is defined by many machine settings that
must be set properly to deliver each prescribed treatment. The console program enables the
operator to choose patients and fields from the prescription database, and ensures that the
radiation beam can only turn on (through a separate nonprogrammable subsystem) when
the prescribed settings for the chosen field have been achieved.

The informal requirements for the console program, including but not limited to its user
interface, comprise 45 pages of prose and diagrams (chapter 8 in [8]) which describe the
activities associated with about a dozen different screens. For example, Fig. 1 shows the
fields available for the currently selected patient, and Fig. 2 shows information about the
two dosimeters (which are replicated for safety) as well as some safety interlocks. Operators
select these screens by pressing dedicated function keys, and can also position a cursor over
particular items on each screen and select them (for example to choose one of the fields
shown in Fig. 1 in order to load its prescribed settings). Operators can also enter or modify
values for some items after they select them, by typing at the workstation keyboard.

4 Formal model

A 17 page section in [9] provides a formal definition for the user interface to every op-
eration described in the prose requirements [8]. This section includes about 450 lines of
Z text (expressed as [ATpXsource) divided between about 50 schemas and some axiomatic
definitions. The following summary is simplified for brevity.

Each operation from the prose is modelled by one or more Z operation schemas on the
Console state. The display state variable indicates which of the screen designs (such as
those shown in Figs 1 and 2) is currently visible. The edit state variable indicates what
kind of user interaction is currently in progress: it is i¢dle when no interaction is in progress
and the console is waiting for input, editing when the user is entering or modifying a value
and the console is waiting for the user to type a character, etc. The item state variable
indicates the name (not the value) of the item which is being modified, while buffer models
the (possibly incomplete) string that the user edits. Most operations are only Awailable
when editing is not already in progress; otherwise, the console is Engaged.

EDIT == idle | editing | ...

ﬁPERATOR: Adam Smith

~

PATIENT: Test Patient FIELD: None
GANTRY FILTER LEAF DOSI- THERAPY PROTON
/PSA /WEDGE COLLIM METRY INTLKS BEAM
FIELDS

Field Fractions To date MU Total Expected To date
1 Anterior 16 12 122 1952 1464 1464
2 Left Lateral 16 12 139 2224 1668 1668
3 Posterior 16 11 124 1984 1364 1364
4 Right Lateral 16 11 135 2160 1485 1413

Figure 1: Fields display

~

ﬁPERATOR: Adam Smith PATIENT: Test Patient FIELD: Posterior

GANTRY FILTER LEAF DOSI- THERAPY PROTON
/PSA /WEDGE COLLIM METRY INTLKS BEAM
DOSIMETRY

SETTING | PRESCR | PRESET | ACCUM STATUS
DOSE A 105.0 105.0 000.0 DMC Self-test in progress
DOSE B 105.0 105.0 000.0 Dosimetry Not Ready
TIME 2.09 2.09 0.00
THERAPY INTERLOCKS
Dosimetry HCheck & Confirm H Line Released HGantry/PSA Motion

Figure 2: Dosimetry and interlocks display

__Console
display : DISPLAY
edit : EDIT
item : NAME
buffer : STRING

Awailable = [Console | edit = idle]
Engaged = [Console | edit € { editing, ... }]

Operations occur whenever the user provides input at the workstation by typing or pressing
a function key (we do not use the workstation “mouse”). Every input event is modelled by
the Event operation schema. Each value of INPUT represents a different X event, but we
can ignore many of them.

FEvent
A Console
input? : INPUT

Ignore = Event A ZConsole

When the console is Available, the user may select a new display by pressing a function
key (for example to choose one of the displays shown in Figs. 1 or 2, among others). We
need a function name to associate the input? (the function key that the user presses) with
the name of the DISPLAY that the user wants to see. The newly selected display’ appears
and console remains Available. Here we do not need to model the details of updating the
display contents.

_SelectDisplay
Event

Awvailable

Awailable’

name input? € DISPLAY
display’ = name input?

The SelectDisplay operation schema corresponds to a single operation in the informal prose
description. Other operations from the informal description must be modelled as several Z
operations. Each editing operation is modelled as at least three Z operations: one to begin
Editing (when the user presses an appropriate function key), another to Get each keystroke

and modify the buffer (usually just by adding the new character to the end), and a third to
Accept the new value when editing is finished (signalled when the user types a terminator
character, such as the RETURN key).

__ Edit
FEvent

Available
Engaged’
buffer’ = empty
display’ = display

__ Get
FEvent

Engaged

Engaged’

buffer’ = modify buffer input?
display’ = display

item' = item

__ Accept
Event

Engaged

Awvailable’

nput? € terminator
buffer’ = buffer
display’ = display

Edit and Accept are building blocks; we specialize them to describe particular editing opera-
tions. The simplest example occurs when the operator types a message to annotate an event
log (which is mostly written automatically). The user presses the WRITE LOG MESSAGE
function key to invoke the EditMessage operation, a specialization of Edit. This results in
the FEditingMessage state:

__ EditMessage
Edit

input? = log_message
item’ = name log_message

EditingMessage = [Engaged | item = name log_message]

As the user types, Get collects characters in buffer. When the user types a terminator
character, the WriteMessage operation, a specialization of Accept, writes the completed
message! to the event log.

— WriteMessage
Accept
message! : STRING

EditingMessage
message! = buffer

Most editing operations work in a similar fashion, but the values that they collect change
the underlying machine state instead of merely appearing in a file.

5 Combining the operations

The Z texts in Section 4 do not describe any explicit control structure that invokes operations
when they are requested. We must design and implement this control structure. We begin
by combining all top-level operations into a single ConsoleOp schema (not including building
blocks such as Event, Edit and Accept which are only used to define other operations).

ConsoleOp = SelectDisplay V EditMessage NV WriteMessage V ...V IgnoreOthers

This ConsoleOp operation is invoked whenever the user provides any input (keypress). The
control structure is implicit in the preconditions of all the constituent operations. We have
tried to define each of these so that the precondition of exactly one is satisfied each time
ConsoleQOp is invoked. IgnoreOthers is the default do-nothing operation whose precondition
is the negation of the disjunction of the preconditions of all the other operations.

6 State transition table

The ConsoleOp operation defines a finite-state machine where each of the constituent opera-
tion schemas describes a single transition. (Any state machine constructed from Z operation
schemas in this way is a Mealy machine whose outputs are associated with state transitions.
The analyses of Jaffe, et al. [10] are based on a Mealy model.) Table 1 shows the state tran-
sition table derived from the Z texts in [9] (which are more complicated than the simplified
excerpts presented in Section 4). We developed code that can interpret any state machine

State ‘ Input ‘ Operation
key = locked (all inputs) Locked
Awvailable name input? € DISPLAY SelectDisplay

input? = log_message TypeMessage

TUN = TUNNING input? = cancel_run SelectCancelRun

Setup input? = auto_setup AutoSetup
input? = expt_mode EzptMode
input? = store_field EditField
input? = edit_setting SelectSetting
input? = override_cmd SelectOverride
input? = logout Logout

ListingPatients name input? € ran patients SelectPatient

ListingFields name input? € dom fields SelectField

(other inputs) Ignore
Engaged input? € CHAR Get
= LoggedOut input? = cancel Cancel

EditingCancel input? = confirm Cancel Run

TypingMessage input? € terminator WriteMessage

EditingField input? € terminator StoreField

EditingSetting input? € terminator StoreSetting

Overriding input? = confirm Qverride

LoggedOut input? € terminator Login
input? = cancel NoCancel
(other inputs) Ignore

Table 1:

User interface state transition table.

that is expressed in this tabular form, not just the particular state machine defined by the
operations in [9]).

This table-driven interpreter (or dispatcher) is our alternative to the usual way to implement
event-driven X programs, which is to code a a large case statement with a case branch for
each event [11].} Our method has advantages when many of the events must be handled in
a similar, but not exactly identical, fashion. In such cases our method results in code that is
shorter. We also feel it is clearer (and should be easier to modify) because the factoring-out
of similar features that appears in the Z texts is expressed in exactly the same way in the
program code.

We build Table 1 by listing all of the operation schemas that are combined in ConsoleOp.
These determine the contents (but not the order) of the third column. Then we extract the
preconditions of each. We determined the preconditions by inspection, not by performing
the Z precondition calculation described in [13]. Preconditions on input? are listed in the
middle column, while those involving other state variables are listed in the first column. In
our table, sequence order and indentation represent the nesting of states that is expressed
in Z by schema inclusion.

The precondition states in the first column are indicated by the names of the Z state schemas
from [9] where they are defined. Solid double lines separate the mutually exclusive states
key = locked, Available and Engaged. Solid single lines, together with indentation, indicate
that the table entries enclosed between them are substates of preceding entries. The full
precondition of a substate is formed by conjoining the preconditions of the preceding entries
at lesser indentation. For example, the full precondition of the substate on the row with
ListingPatients in the first column is Available A Setup A ListingPatients. This conjunction
is the precondition given in [9] for the SelectPatientC operation, that appears in the third
column of the same row. When the first column in a row is blank, the substate is the
same as the last preceding nonblank column: the precondition for the Logout operation is
Awvailable N\ Setup.

Dotted lines separate mutually exclusive substates. Thus run = running and Setup indicate
mutually exclusive substates of Awvailable, and ListingPatients and ListingFields indicate
mutually exclusive substates of Setup.

The inputs in the middle column are expressed as predicates on the variable input?. The
right column lists the operation schemas that define the next state, as well as any outputs.
Each line also applies to any included substates, so name input? € DISPLAY elicits the
SelectDisplay operation in the Awailable state, and also in its substates run = running,
Setup, and in its sub-substates ListingPatients and ListingFields.

!Bowen [1] modelled some display aspects of the X window system in Z, but did not consider event
handling.

Our table suggests an efficient implementation. It should only be necessary to test each
distinct state precondition once. It should not be necessary to test preconditions of substates
that are indented under states whose preconditions have been found to be false.

7 Formalizing the state transition table

To develop a program that interprets the state transition table, we must express its meaning
formally. Each entry in the table is described by the Transition schema. The indentation
of each row is indicated by an integer nesting depth. The state and input preconditions
in the first and second columns are indicated by predicates expressed as unary relations
on Console and INPUT, respectively. The operations in the third column of the table are
modelled by functions on Console states. Table 1 is modelled by ¢, a sequence of these
records.

Transition
depth : N
state : P Console

in: PINPUT

op : Console -+ Console

‘ t : seq Transition

Here are some excerpts from Table 1 in Z syntax. The entry for ¢ 6 shows how we model
rows in Table 1 where the first column is blank: we set the state in the Transition record
to the empty set, &.

.depth =0

.state = { Console | key = locked e 8 Console }
an = {input? : INPUT | true }

.0p = { Locked e (6 Console,f Console') }

)
)
)
)
)
).state = { Setup e 6 Console }

).in = { input? : INPUT | input? = auto_setup }
).op = { AutoSetupC o (0 Console,d Console') }

)

)

)

)

an = {input? : INPUT | input? = expt_mode }
.0p = { EzptModeC o (0 Console, @ Console’) }

10

8 Interpreting the state transition table

In this section we formally define the core of interpreter: the transition function that takes
any Console state and input? into a new Console state. The table ¢ is a parameter of this
function.

We interpret the table by traversing it from top to bottom, searching for an entry which
is enabled. We say an entry is enabled if its full state precondition is satisfied: this is true
when the precondition given in the first column of the entry is satisfied, and all the nearest
preceding entries at lesser indentations are enabled as well. If the first column entry is
blank, the entry is enabled if the immediately preceding entry is enabled.

We define a unary prefix relation e on table entries; e(i) is true if table entry 4 is enabled.
The unary prefix relation edd(i) describes the effect of sequence order and indentation; it
is true if all the nearest preceding entries at lesser indentation are enabled. For e(i) to be
true, edd(i) must be true. Its definition uses the binary prefix relation ed(i, d), which is
true when the nearest entry indented at depth d that precedes entry 4 is enabled, or if there
is no such preceding entry.

e_, edd_ : P(dom t)
ed_ :domt < N
Vi:domt e

(Vd:Ne(letds=={j:1..i—1|(tj).depth =d} e
ed(i,d) < e(mazx ds) V ds = D)) A

(let d == (ti).depth
edd(i) & (Vdd :0..d —1 e ed(i,dd))) A

(V¢ : Console o
e(i) < edd(i) A (((ti).state = D N e(i — 1))
V ((ti).state # D N ¢ € (ti).state)))

When we have found an enabled entry, we test whether the input precondition given in the
second column is also satisfied. If it is, we say the transition has triggered. We then apply
the function given in the third column to obtain the new state. If no entries are triggered,
the new state is the same as the old state.

transition : (Console x INPUT) — Console

Vinput? : INPUT; ¢ : Console o
transition(c, input?) =
if 3i:domt e e(i) A input? € (ti).in then (¢ i).op c else ¢

11

A single application of the transition function is the processing of a single input event. It
is expressed by the ConsoleOpl operation:

ConsoleOpl = [Event | 6 Console’ = transition(6 Console, input?) |

If the table ¢ is constructed properly, this operation is the same as the ConsoleOp we defined
in section 5. In other words, ConsoleOpl is a refinement of ConsoleOp.

The refinement is correct because each entry in ¢ corresponds to one disjunct in ConsoleOp.
The only subtle point involves the preconditions of the substates (the indented table entries).
The precondition of a substate is the conjunction of the condition listed in the substate’s
own table entry, and all the conditions listed in the nearest preceding entries at lesser
indentation. We have expressed this formally by including edd in the definition of e.

9 Simplifying the interpreter

The formal definition of {ransition expresses our intent, but is not ready for translation to
an executable program. The definition of e includes predicates about sets and quantifiers.
Implementing these directly would result in a complicated, inefficient program. We can
eliminate them.

The definition of e says that all nearest preceding entries at lesser indentation must be
enabled. This holds only if no such entry is not enabled. We only need to keep track of
a single preceding disabled entry: the one which is least indented. We record its depth of
indentation dd.

When traversing the table, we may encounter sequences of disabled entries, where indented
entries are disabled because preceding entries at lesser depth are also disabled. Our dd
is the depth of the entry at the beginning of the most recently encountered sequence of
disabled entries.

It turns out to be more convenient to keep track of all the preceding entries, not just those
which are at a lesser depth than the current entry. The depth of the preceding entry dp
might be greater than the depth of the current entry d. The depths of all the preceding
disabled entries form the set dds, and dd is the smallest element in the set. If the depth
of the current table entry d is not greater than dd, or if there are no preceding disabled
entries (the set dds is empty), then the current entry can be enabled. We can express this
argument formally:

12

Vi:domt e (let d == (t1i).depth; dp == (t (i — 1)).depth e [Define d, dp]

e(i) = edd(i) [Definition of e(i)]
< (Vdd:0..d—1eed(i,dd)) [Definition of edd(i)]
<= (3dd:0..d—1e—ed(i,dd)) [Predicate calculus]
< (let dds =={dd :0..dp | —~ed(i,dd)} [Define dds]

(0..d=1)Ndds =D [Definitions of ranges for ed, dds]
S dds =0V d—1<mindds [Set theory, range arithmetic]
< dds =0V d < min dds [Arithmetic, < vs. <]
< (let dd == min dds e dds = 2V d < dd))) [Define dd

This result is useful because we can easily keep track of the existence of dds and the value of
dd without maintaining an explicit representation of the whole set dds. The only predicate
we actually need to test in the implementation is the final one:

dds =DV d < dd

The dds = & condition occurs when we are not traversing a sequence of disabled entries, and
the d < dd condition occurs when we have just emerged from the end of such a sequence.

10 Implementing the interpreter

Our implementation language is a (nonstandard) Pascal dialect [3] that provides pointers to
functions and procedures. This makes it easy to translate ¢ and Transition, the declarations
for the state transition table, from Z.2

type
Transition = record
depth: integer;
state: “function;
in: “function;
op: “procedure;
end;

var
t: arrayl[0..n] of Transition;

% Actually, the syntax for pointing to functions and procedures is a bit more complicated than indicated
here.

13

The state and in functions are implemented in Pascal as boolean functions that test the
console state variables and the input, respectively, and return true if the preconditions are
satisfied. Table entries whose first column is blank (as in the entries following Setup) are
indicated by assigning the state pointer to nil. The op procedures are implemented as
Pascal procedures that perform the state changes (assignment statements) called for in the
operation schemas. Our op procedures do not check any preconditions, but rely on the
state and in functions for this.

Our implementation of the transition function is presented here as a Pascal procedure
without parameters; the table ¢, the input? and the Console state variables are all global.
Its local variables derive from the formal development.

function transition;

var
i: 1integer;
e: boolean;
ed: boolean;
empty: boolean;
d: integer;
dd: integer;
tr: Dboolean;

7 index of current table entry

e(1) current entry is enabled

e(i —1) preceding entry is enabled

dds = no preceding disabled entries

(ti).depth, depth of current table entry

dd depth of least indented preceding disabled entry
e(i) A current entry is triggered

input? € (ti).in

e A A e e
S

Our transition code tests each table entry in turn. Our Pascal dialect [3] provides a (non-
standard) invoke function that executes a function or procedure indicated by a pointer.?
This makes it easy to translate the formal definitions of e and transition from section 8. We
implemenent p < g A rasif q then p := r else p := falseinsteadofp := q and r
in order to avoid the expense of evaluating r when ¢ is false.

3The actual syntax of invoke is a bit more complicated than shown here.

14

R e e e e VRSV

function transition;
while i < n ...
{ Invariant: dds =2V dd = mindds ...}

if empty or (d <= dd) then
if (t[i].state = nil)

then e := ed;
else e := invoke(t[i].state)
else e := false;
if e then tr := invoke(t[i].in) else tr := false;

if tr then invoke(t[i].op);

{ Maintain invariant }

This code is correct if the program variables satisfy their formal definitions when the assig-
ment to e is made. This condition is the loop invariant: it must be true each time execution
reaches the first if statement inside the while loop. We first establish the invariant by as-
signing values to program variables before entering the loop. Then, each time e is assigned
in the body of the loop, new values must also be assigned to other variables in order to
maintain the invariant. The only tricky part of the invariant is dds = @ V dd = min dds.

To maintain this invariant, three conditions are pertinent: e(i), dds = &, and d < dd.
In the following discussion the unprimed variables dd and dds represent the values at the
top of the loop when e is assigned, and the primed variables dd’ and dds’ represent the
new values assigned at the bottom of the loop, that will apply when e is assigned in the
next turn of the loop. The correct assignments to dd’ and dds’ = @ can be determined
by a case analysis, shown in Table 2. A formal justification of the case analysis appears in
Appendix A.

We only need to write code for cases where the new (primed) values dd’ or dds" differ from
their initial (unprimed) values. The analysis reveals three such cases, which are highlighted
by boxes in the table: when a disabled entry is encountered after a sequence of enabled
entries (case 5), when an enabled entry is encountered after a sequence of disabled entries
(case 8), and when a disabled entry at lesser depth is encountered after a sequence of
disabled entries at greater depth (case 7). Writing out the code for each case, we obtain

15

[e(i) dds=9@ d<dd]dds =0 dd" |

false false false false(2) dd (3)
true false false XX (4) XX (4)
false true X (1) (2,5) (5)
true true X (1) | true(6) X (1)
false false true false(2) @ (7)
true false true [true] (8) X (1)

Table 2: Maintaining the invariant dds = @ V dd = min dds

{ Maintain invariant }

if (not e) and empty then begin empty := false; dd := d end; { case (5) }
if (not e) and (not empty) and (d <= dd) then dd := d; { case (7) }
if e and (not empty) and (d <= dd) then empty := true; { case (8) }

We only need to add a little loop machinery to complete the development. The completed
transition function appears in Fig. 3. The complete dispatcher is simply a loop that, on
each turn, removes one event from the head of the X event queue and calls transition.
Almost all of the work in our application is done by code that lies outside the X event
loop: transition itself, and the state, in and op functions and procedures indicated by
the pointers in table t, that actually implement the schemas from [9]. This differs from the
style of implementing X programs recommended in [11], where the event loop contains a
large case statement with a case branch for each event.

In our implementation the dispatcher, including the transition function, the rest of the
X event loop code, and table t comprise about n lines of Pascal code (including plenty
of comments and blank lines). The functions and procedures that implement the schemas
comprise another m lines.

References

[1] Jonathan P. Bowen. X: Why Z? Computer Graphics Forum, 11(4):221-234, October
1992.

[2] Digital Equipment Corporation, Maynard, Massachusetts. Introduction to VAXELN,
October 1991.

16

[3]

[4]

Digital Equipment Corporation, Maynard, Massachusetts. VAXELN: Pascal Program-
ming Guide, December 1991.

Jonathan Jacky. Formal specifications for a clinical cyclotron control system. In Mark
Moriconi, editor, Proceedings of the ACM SIGSOFT International Workshop on For-
mal Methods in Software Development, pages 45-54, Napa, California, USA, May 9-11
1990. (Also in ACM Software Engineering Notes, 15(4), Sept. 1990).

Jonathan Jacky. Formal specification and development of control system input/output.
In J. P. Bowen and J. E. Nicholls, editors, Z User Workshop, London 1992, pages 95—
108. Proceedings of the Seventh Annual Z User Meeting, Springer-Verlag, Workshops
in Computing Series, 1993.

Jonathan Jacky. Specifying a safety-critical control system in Z. In J. C. P. Woodcock
and P. G. Larsen, editors, FMFE ’93: Industrial-Strength Formal Methods, pages 388—
402, Odense, Denmark, April 1993. First International Symposium of Formal Methods
Europe, Springer-Verlag. Lecture Notes in Computer Science 670.

Jonathan Jacky, Ruedi Risler, Ira Kalet, and Peter Wootton. Clinical neutron therapy
system, control system specification, Part I: System overview and hardware organi-
zation. Technical Report 90-12-01, Radiation Oncology Department, University of
Washington, Seattle, WA, December 1990.

Jonathan Jacky, Ruedi Risler, Ira Kalet, Peter Wootton, and Stan Brossard. Clinical
neutron therapy system, control system specification, Part II: User operations. Tech-

nical Report 92-05-01, Radiation Oncology Department, University of Washington,
Seattle, WA, May 1992.

Jonathan Jacky and Jonathan Unger. Formal specification of control software for a ra-
diation therapy machine. Technical Report 94-07-01, Radiation Oncology Department,
University of Washington, Seattle, WA, July 1994.

Matthew S. Jaffe, Nancy G. Leveson, Mats P. E. Heimdahl, and Bonnie E. Melhart.
Software requirements analysis for real-time process control systems. [EEE Transac-
tions on Software Engineering, 17(3):241-258, March 1991.

Adrian Nye. Xlib Programming Manual. O’Reilly and Associates, Inc., Sebastopol,
CA, 1988.

R. W. Scheifler and J. Gettys. The X window system. ACM Transactions on Graphics,
5(2):79-109, 1986.

J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, New York, second
edition, 1992.

17

function transition;

var
i: 1integer;
e: boolean;
ed: boolean;
empty: boolean;
d: integer;
dd: integer;
dleq: integer;
tr: boolean;

7 index of current table entry
e(1) current entry is enabled

e(i —1) preceding entry is enabled

dds = o preceding disabled entries

(ti).depth, depth of current table entry

dd depth of least indented preceding disabled entry
d <dd beginning new sequence of disabled entries

e(i) A current entry is triggered

input? € (t1i).in

P P P e e A
IS :

begin

1 :=0; ed := true; tr := false; empty := true;

while (i < n) and (not tr) do

begin
d := t[i].depth
dleq := d <= dd;
{ Invariant: dds =@V dd = min dds }
if empty or dleq then

if (t[i].state = nil)
then e := ed;
else e := invoke(t[i].state)
else e := false;

if e then tr := invoke(t[i].in) else tr := false;
if tr then invoke(t[i].op);
{ Maintain invariant }
if (not e) and empty then begin empty := false; dd := d end;
if (not e) and (not empty) and dleq then dd := d;
if e and (not empty) and dleq then empty := true;
ed := e;
i:=1+1;

end;

end;

Figure 3: Completed transition function.

18

[N VDV Y G D Y S

A Maintaining the invariant

This section presents the justifications for the numbered entries in Table 2. Before working
through the table, we establish some generally useful results. It is convenient to package
up pertinent state variables, definitions and the loop invariant in the Loop schema. The
Step operation schema models the effect of executing the code at the end of the loop in
Fig 3 (after the comment, “Maintain invariant”). Note that the primed “after” variables
are defined automatically for us by the usual Z convention.

__ Loop
1 :domt
d,dd : N
dds : PN

d = (ti).depth
dds ={dd :0..(t (i —1)).depth | = ed(i, dd) }
dds =V dd = min dds

Step = [ALoop | ' =i +1]

We counsider all the formal text that follows to be within the scope of the definitions in Step.
Now we can derive some results.

A. The range of dds' is 0 .. d.

maz dds" < (t (i' — 1)).depth [Def’n of dds range, ' naming convention]
= (t((1 +1) — 1)).depth [i' =1 +1]
= (t1).depth [Arithmetic]
=d [d = (ti).depth]

B. The enabled state of the current entry becomes the enabled state of of the most recent
entry at its own depth: e(i) < ed(i', d)

(let ds' =={j:1..i"—1|(tj).depth =d} e [Detf’n of ed(i,d) in section 8]

e(i) < e(maz ds') [i"—1=1i,i=maz1..4, def’n of d]

< ed(i,d")) [Definitions of e(i), ed(i, d)]

C. When an entry is not enabled, its depth becomes one of the preceding disabled depths:
—e(i) & d € dds'.

—e(i) & —ed(i,d) [Result B
& d € dds' [Result A, definitions of d, dds']

19

D. When an entry is enabled, for subsequent entries the set of preceding disabled entries
is empty: e(i) & dds' = @.

e(i) = edd(7) [Definition of e()]
< (Vdd:0..d—1eed(i,dd)) [Definition of edd(i)]
S (0..d—-1)Ndds' =2 [Definition of dds']
& dds' =@ [A: dds' C0..d, but C: d ¢ dds']

Now we can work through the entries in Table 2.

1. When dds = & the value of dd doesn’t matter. The invariant holds because
dds =& = (dds =DV dd = min dds) [p=pVq]
X indicates this “don’t care” condition. We only need six rows in the table, not eight.

2. When an entry is disabled, its own depth must be one of the elements of dds’, which
cannot be empty.

—e(i) = dds' #90 [C: d € dds']

3. When an entry is disabled but its own depth is greater than dd, then dd remains the
smallest element in dds’.

—e(i) Ndds #DNd > dd [Entry in Table 2]
= dds' = dds U {d} [C: d € dds', definition of dds']
= dd = min dds’' [dd < d]
& dd' = dd [Definition of dd']

4. Here the entry is enabled but its depth is greater than dd. This condition is impossible
because it contradicts the result about e(i) we derived in section 9.

e(i) Ndds #D N d > dd [Entry in Table 2]
& false [Section 9: e(i) = dds =D V d < dd]

Inspection of the code confirms that this condition is prevented by the if ...then
...else ... statement in the body of the loop. XX indicates this impossible condition.

5. A disabled entry is first encountered when dds is empty. The depth of this entry
becomes the first — and necessarily the smallest — element in dds’

—e(i) ANdds =D [Entry in Table 2]

20

& dds' = {d} [C: d € dds']
= dds' # D N\ d = min dds' [Set theory, definition of min]
S dd =d [Definition of dd’]

6. If the entry is enabled and dds is empty, it remains so; dds’ is empty, by result D.

7. This disabled entry lies at lesser indentation depth than any nearest preceding disabled
entry, so dd must be reassigned to maintain the invariant.

—e(i) Nd<dd [Entry in Table 2]
= d = min dds' [C: d € dds', d < min dds]
& dd = [Definition of dd’]

8. An enabled entry follows a disabled entry that was indented to an equal or greater
depth. This signals the end of a sequence of nested disabled entries. By result D, dds’
should be emptied.

This concludes the case analysis.

21

