Automated Testing

in Your Favorite Language

Jonathan Jacky

University of Washington, Seattle, USA
Modeled Computation, LLC

Jonathan Jacky

Acknowledgments

Foundations of Software Engineering at Microsoft Research:

Mike Barnett, Nikolaj Bjorner, Colin Campbell, Wolfgang
Grieskamp, Yuri Gurevich, Lev Nachmanson, Wolfram Schulte,
Nikolai Tillman, Margus Veanes

NModel:

Colin Campbell, Margus Veanes
recently Juhan Ernits, Ofer Rivlin

Jonathan Jacky

We need to test behavior: ongoing activities that may exhibit
history dependence and nondeterminism. For example:
communication protocols, embedded controllers, user interfaces, ...

We represent behavior with traces: sequences of actions with
arguments. Specify a system by describing which traces are
allowed, and which are forbidden.

Allowed Forbidden Forbidden Forbidden Allowed Allowed Allowed
Push(0) Push(0) Pop(0) Push(0) Push(0) Push(0) Push(0)
Pop(0) Pull(0) Push(0) Pop(1) Push(1) Pop(0) Push(
Push(2) Push(1) Push(2)

Pop(2) Pop(1) Push(3)

(4)

(5)

Pop(1) Push(2) Push
Pop(0) Pop(2) Push

Jonathan Jacky

Finite State Machines

Finite state machines can describe behaviors where the action
arguments have a finite (small) number of values (no numbers,
strings, ...).

Traffic light - a finite system, but with an infinite number of traces.

Change(Green) Change(Green)
Change(Yellow) Change(VYellow)
Change(Red) Change(Red)
Change(Green)
Change(Yellow)
hange(Red) Change(Red)
Change(Green)
Change(Yellow)
Change(Red)

etc...

Jonathan Jacky

Finite State Machines

Alternating bit protocol - a finite system with nondeterminism.

ACK(D) Ack(1)
s Send(0) Ack(1)

Ack(0)
Send(1)

Send(0) Send(1) Send(1) Send(1) etc...
Ack(0) Send(1) Send(1) Ack(1)
Send(1) Ack(1) Ack(1) Send(1)
Ack(1) Send(0) Send(1) Ack(1)
Ack(1) Ack(1) Ack(1)
Ack(1) Send(1) Send(0)
Send(0) Ack(0)
Ack(0)

Jonathan Jacky

Finite State Machines

In NModel, FSMs are coded in text, as the graph of the machine.

FSM(Red, AcceptingStates(Red),
Transitions(t(Red, Change(Green), Green),
t(Green, Change(Yellow), Yellow),
t(Yellow, Change(Red), Red)))

Jonathan Jacky

Model programs

Model programs can describe behaviors where the action
arguments can have an “infinite” (very large) number of values.

A model program consists of state variables, action methods and
enabling conditions.

In NModel, model programs are coded in C#.

// State
internal static Sequence<int> stack = new Sequence<int>();

// Push is always enabled
[Action] static void Push(int x) { stack = stack.AddFirst(x); }

// Pop requires enabling condition
static bool PopEnabled(int x) {

return !stack.IsEmpty && stack.Head == x;
}

[Action] static void Pop(int x) { stack = stack.Tail; }

Jonathan Jacky

Exploration

Exploration generates an FSM from a model program, by starting
at the initial state and executing some enabled actions, until ...

Jonathan Jacky

Exploration

Exploration generates an FSM from a model program, by starting
at the initial state and executing some enabled actions, until ...

Jonathan Jacky

Exploration

Exploration generates an FSM from a model program, by starting
at the initial state and executing some enabled actions, until ...

Jonathan Jacky

Exploration

Exploration generates an FSM from a model program, by starting
at the initial state and executing some enabled actions, until ...

Jonathan Jacky

Exploration

Exploration generates an FSM from a model program, by starting
at the initial state and executing some enabled actions, until ...

etc ...

Jonathan Jacky

Exploration

We must limit exploration of infinite programs. Finite domains
limit the width of the graph. Here the state filter limits its depth.

static Set<int> Elements = new Set<int>(0, 1);
[Action] static void Push([Domain("Elements")] int x)

[StateFilter] static bool IsDepthLimited() { return Model.stack.Count < 4; }

Jonathan Jacky

A state invariant should be true in every state. Define state

invariants for safety analysis.

[StateInvariant]
static bool CalibratelInRange()

{

return (!CalibrateEnabled() || buffer == InRange);

}
A model program should only stop in an accepting state. Define

accepting state conditions for liveness analysis.

[AcceptingStateCondition]
static bool SafeCalibrateEnabled()

{
return (CalibrateEnabled()
&& buffer == InRange
&& previous == double.Parse(InRange));
}

Jonathan Jacky

Safety Analysis

Exploration can search for unsafe states that violate the state
invariant.

1 Appearance (states)
AcceptingStatesMarked True

InitialStateColor [LightGray
NodelabelsVisitle True
StateShape Cirdle

5 Appearance (transilions)
CombineActions True
LoopsVisible True
Mergelabels True
TransitionLabels Action

B Exploration fimits

MaxTransitions 300
= Exploration statistics

CtataChona

Variables in state 37

= Reactive
buffer "999.9"

cevent ControlEvert({"Command")
MessageRequested false

phase Phase("HandleEvent")
previous double("999.9")

sensor Sensor{"OK")
TimeoutScheduled true

waitfor Wait For(" Timeout ")

Jonathan Jacky

Liveness Analysis

Exploration can search for dead states where there is no path to an
accepting state.

B Appearance (states)
AcceptingStatesMarked True

Initial StateColor [LightGray
NodelabelsVisible Tue
StateShape Circle

E Appearance (transitions)
CombineActions True
Loops\Visible True
Mergelabels True
TransitionLabels Action

B Exploration limits
MaxTransitions 300

B Exploration stabistics

=

& o
Acaboic —]
Variables in state 102

AN & Reaclive

%
A
{ "309.9"

b
WSy
"vg' cevent Cortrol Evert{"Command"}

4

W= \ MessageRequested trus
b phase Phase(WaitForEvert")
(B previous double('939.5")
s S sensor Sensor("0K')
- TimeoutScheduled true
& Ay waitfor WaitFor{"Timeout")
<

Jonathan Jacky

Offline Test Generation

Generate an FSM from a model program for a simple client/server
using sockets. There are redundant paths due to different
interleavings of startup and shutdown actions in client and server.

Jonathan Jacky

Offline Test Generation

Generate a test suite by traversing all the paths in the client/server
FSM. Several similar test runs are needed to cover the redundant
paths.

Test generation should include scenario control to exclude
irrelevant cases.

Jonathan Jacky

Composition combines two or more programs to form a new
program, the product.

M1XM2:P

Usually we combine a contract model program in C# with a
scenario machine, an FSM.

Contract x Scenario = Product

Composition can be used for scenario control, validation, program
structuring . ..

Jonathan Jacky

Composition synchronizes shared actions.

Jonathan Jacky

Composition synchronizes shared actions.

Jonathan Jacky

Composition synchronizes shared actions.

This usually has the effect of restricting behavior.

Jonathan Jacky

Composition interleaves unshared actions.

-. e0ff()

Jonathan Jacky

Composition interleaves unshared actions.

-. e0ff()

Jonathan Jacky

Composition interleaves unshared actions.

-. e0ff()

This usually has the effect of adding behavior.

Jonathan Jacky

Composition with a scenario can help validate a model program.

Jonathan Jacky

Composition with a scenario can help validate a model program.

Jonathan Jacky

Composition with a scenario can help validate a model program.

The product shows whether the model program can execute the
complete scenario. Does the product reach an accepting state?

Jonathan Jacky

Scenario Control

Compose the contract model program with a scenario machine to
eliminate redundant startup and shutdown paths.

Jonathan Jacky

Scenario Control

Compose the contract model program with a scenario machine to
eliminate redundant startup and shutdown paths.

Jonathan Jacky

Scenario Control

Compose the contract model program with a scenario machine to
eliminate redundant startup and shutdown paths.

The product is a connected graph so all paths can be covered by a
single test run.

Jonathan Jacky

Executing tests requires a harness (or adapter) to connect the
model program to the implementation. In NModel a test harness is

called a stepper.

// Implementation
Server s = new Server();
Client ¢ = new Client();

public CompoundTerm DoAction(CompoundTerm action) {
switch (action.Name) {
/...
case("ServerSend"):
s.Send((double) ((Literal) action.Arguments[0]).Value);

return null;
// Actions that return values split into _Start and _Finish

case("ClientReceive_Start"):
return CompoundTerm.Create("ClientReceive_Finish", c.Receive());

Jonathan Jacky

Test Execution

The NModel test runner can execute a test script that was
generated offline.

> ct /r:Stepper.dll /iut:ClientServerImpl.Stepper.Create /testSuite:Scenar
ioTest.txt

TestResult (0, Verdict("Failure"),
"Action ’ClientReceive_Finish(double(\"99\"))’ not enabled in the model",
Unexpected return value of finish action, expected:
ClientReceive_Finish(double "99.9"))
Trace(
Test (0),
ServerSocket (),

. etc.

ServerSend (double("100")),
ClientReceive_Start(),
ClientReceive_Finish(double("100")),
ServerSend(double("99.9")),
ClientReceive_Start(),
ClientReceive_Finish(double("99"))

)

Jonathan Jacky

On-the-fly Testing

On-the-fly testing overcomes some disadvantages of offline test
generation.

@ Generates test cases as the test run executes

@ No FSM is generated, needn't finitize

@ Handles nondeterminism economically

@ Test runs can be indefinitely long, nonrepeating

°

Can select among enabled actions randomly, or use an
optional programmable strategy to increase coverage

Jonathan Jacky

Modeling and analysis

@ A model can serve as a test case generator and oracle.

@ Models are effective for testing behavior: ongoing activity that
may exhibit history-dependence and nondeterminism.

@ Represent behavior with traces: sequences of actions with
arguments.

@ Describe finite behaviors with FSMs, infinite behaviors with
model programs.

@ Exploration generates an FSM from a model program for
visualization, safety and liveness analyses, or offline test
generation.

e Composition combines programs by synchronizing shared
actions and interleaving unshared actions.

@ To validate a model program, compose it with FSMs that
represent forbidden and allowed scenarios.

Jonathan Jacky

Testing
@ Automated testing requires scenario control to limit the
generated tests.

@ To achieve scenario control, compose the contract model
program with a scenario machine.

@ The test harness translates between the abstract model
program and the implementation.

o Offline test generation depends on exploration, with all its
limitations.

@ On-the-fly testing can generate indefinitely long, nonrepeating
test runs for nondeterministic systems.

@ On-the-fly testing can use a programmable strategy to
increase coverage.

Jonathan Jacky

Industrial experience seems to be limited to post hoc modeling by
test engineers, to test implementations that are already built.

Modeling and analysis in this style might help during earlier project
stages, to assist in evaluating, improving, and documenting
designs, and to plan for tests.

Jonathan Jacky

Resources

Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell, Wolfram Schulte

Model-Based
Software Testing
and Analysis

with C#

Cambridge University Press, 2008

Jonathan Jacky

Resources

NModel is a model-based testing and analysis framework for C#.

NM

Home

NModel

Downloads

< Back to Recent Check-Ins

Discussions

I I
Search all CodePlex projects

Issue Tracker m Stats People License

»RSS B)

Change Set 23445 Mp2DotGraphView.cs 73.1 KB

Expa

d all
» Properties

~ Utilities
AssemblyResolver.cs
CommandLineParser.cs
Dotw
InstallHelper.cs
M
M

riter.cs

2DotCommandLine.cs

2DotGraphView.cs
Mp2DotGraphView.Settings.c
ReflectionHelper.cs

GlobalSuppressions.cs

Modeling.snk

© 2006-2009 Microsoft

About CodePlex

Compare to other versions: Select version ~
using NModel;

using NModel.Terms;
using Transition = NModel.Triple<NModel.Terms.Term, NModel.Terns.CompoundTerm, NModel.Terms.Term>;
using Node = NModel.Terms.Term;

using NModel.Execution;
using NModel.Internals;
/1 using GraphLayout =

Microsoft.Glee; // Does not need Glee
/1
71
11
17

This file copied from NModel.Visualization GraphView.cs and renamed here in NModel.Utilities.Gra
then edited to remove dependency on Windows.Forms and Glee,
and to remove all code not needed for mp2dot

They payload here is GraphView.ToDot, which writes dot output.

// namespace NModel.Visualization
namespace NModel.Utilities.Graph

// declaration removed, already present in DotWriter.cs

Privacy Statement Terms of Use Code of Conduct

Advertise With Us Version 2009.7.14.15399

http://nmodel.codeplex.com/

Jonathan Jack

