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We need to test behavior: ongoing activities that may exhibit
history dependence and nondeterminism. For example:
communication protocols, embedded controllers, user interfaces, ...

We represent behavior with traces: sequences of actions with
arguments. Specify a system by describing which traces are
allowed, and which are forbidden.

Allowed  Forbidden Forbidden Forbidden Allowed Allowed Allowed
Push(0)  Push(0) Pop(0) Push(0) Push(0) Push(0) Push(0)
Pop(0)  Pull(0) Push(0) Pop(1) Push(1) Pop(0)  Push(
Push(2) Push(1) Push(2)

Pop(2)  Pop(1)  Push(3)

(4)

(5)

Pop(1)  Push(2) Push
Pop(0)  Pop(2)  Push
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Finite State Machines

Finite state machines can describe behaviors where the action
arguments have a finite (small) number of values (no numbers,
strings, ...).

Traffic light - a finite system, but with an infinite number of traces.

Change(Green) Change(Green)
Change(Yellow) Change(VYellow)
Change(Red) Change(Red)
Change(Green)
Change(Yellow)
hange(Red) Change(Red)
Change(Green)
Change(Yellow)
Change(Red)

etc...
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Finite State Machines

Alternating bit protocol - a finite system with nondeterminism.

ACK(D) Ack(1)
s Send(0) Ack(1)

Ack(0)
Send(1)

Send(0) Send(1) Send(1) Send(1) etc...
Ack(0) Send(1) Send(1) Ack(1)
Send(1) Ack(1) Ack(1) Send(1)
Ack(1) Send(0) Send(1) Ack(1)
Ack(1) Ack(1) Ack(1)
Ack(1) Send(1) Send(0)
Send(0) Ack(0)
Ack(0)
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Finite State Machines

In NModel, FSMs are coded in text, as the graph of the machine.

FSM(Red, AcceptingStates(Red),
Transitions(t(Red, Change(Green), Green),
t(Green, Change(Yellow), Yellow),
t(Yellow, Change(Red), Red)))
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Model programs

Model programs can describe behaviors where the action
arguments can have an “infinite” (very large) number of values.

A model program consists of state variables, action methods and
enabling conditions.

In NModel, model programs are coded in C#.

// State
internal static Sequence<int> stack = new Sequence<int>();

// Push is always enabled
[Action] static void Push(int x) { stack = stack.AddFirst(x); }

// Pop requires enabling condition
static bool PopEnabled(int x) {

return !stack.IsEmpty && stack.Head == x;
}

[Action] static void Pop(int x) { stack = stack.Tail; }
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Exploration

Exploration generates an FSM from a model program, by starting
at the initial state and executing some enabled actions, until ...
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Exploration

Exploration generates an FSM from a model program, by starting
at the initial state and executing some enabled actions, until ...

etc ...
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Exploration

We must limit exploration of infinite programs. Finite domains
limit the width of the graph. Here the state filter limits its depth.

static Set<int> Elements = new Set<int>(0, 1);
[Action] static void Push([Domain("Elements")] int x)

[StateFilter] static bool IsDepthLimited() { return Model.stack.Count < 4; }
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A state invariant should be true in every state. Define state

invariants for safety analysis.

[StateInvariant]
static bool CalibratelInRange()

{

return (!CalibrateEnabled() || buffer == InRange);

}
A model program should only stop in an accepting state. Define

accepting state conditions for liveness analysis.

[AcceptingStateCondition]
static bool SafeCalibrateEnabled()

{
return (CalibrateEnabled()
&& buffer == InRange
&& previous == double.Parse(InRange));
}
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Safety Analysis

Exploration can search for unsafe states that violate the state
invariant.
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Liveness Analysis

Exploration can search for dead states where there is no path to an
accepting state.
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Offline Test Generation

Generate an FSM from a model program for a simple client/server
using sockets. There are redundant paths due to different
interleavings of startup and shutdown actions in client and server.
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Offline Test Generation

Generate a test suite by traversing all the paths in the client/server
FSM. Several similar test runs are needed to cover the redundant
paths.

Test generation should include scenario control to exclude
irrelevant cases.
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Composition combines two or more programs to form a new
program, the product.

M1XM2:P

Usually we combine a contract model program in C# with a
scenario machine, an FSM.

Contract x Scenario = Product

Composition can be used for scenario control, validation, program
structuring . ..
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Composition synchronizes shared actions.
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Composition synchronizes shared actions.

This usually has the effect of restricting behavior.
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Composition interleaves unshared actions.

-. e0ff()
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Composition interleaves unshared actions.

-. e0ff()

Jonathan Jacky



Composition interleaves unshared actions.

-. e0ff()

This usually has the effect of adding behavior.
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Composition with a scenario can help validate a model program.
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Composition with a scenario can help validate a model program.

The product shows whether the model program can execute the
complete scenario. Does the product reach an accepting state?
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Scenario Control

Compose the contract model program with a scenario machine to
eliminate redundant startup and shutdown paths.
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Scenario Control

Compose the contract model program with a scenario machine to
eliminate redundant startup and shutdown paths.

The product is a connected graph so all paths can be covered by a
single test run.
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Executing tests requires a harness (or adapter) to connect the
model program to the implementation. In NModel a test harness is

called a stepper.

// Implementation
Server s = new Server();
Client ¢ = new Client();

public CompoundTerm DoAction(CompoundTerm action) {
switch (action.Name) {
/...
case("ServerSend"):
s.Send((double) ((Literal) action.Arguments[0]).Value);

return null;
// Actions that return values split into _Start and _Finish

case("ClientReceive_Start"):
return CompoundTerm.Create("ClientReceive_Finish", c.Receive());
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Test Execution

The NModel test runner can execute a test script that was
generated offline.

> ct /r:Stepper.dll /iut:ClientServerImpl.Stepper.Create /testSuite:Scenar
ioTest.txt

TestResult (0, Verdict("Failure"),
"Action ’ClientReceive_Finish(double(\"99\"))’ not enabled in the model",
Unexpected return value of finish action, expected:
ClientReceive_Finish(double "99.9"))
Trace(
Test (0),
ServerSocket (),

. etc.

ServerSend (double("100")),
ClientReceive_Start(),
ClientReceive_Finish(double("100")),
ServerSend(double("99.9")),
ClientReceive_Start(),
ClientReceive_Finish(double("99"))

)
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On-the-fly Testing

On-the-fly testing overcomes some disadvantages of offline test
generation.

@ Generates test cases as the test run executes

@ No FSM is generated, needn't finitize

@ Handles nondeterminism economically

@ Test runs can be indefinitely long, nonrepeating

°

Can select among enabled actions randomly, or use an
optional programmable strategy to increase coverage
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Modeling and analysis

@ A model can serve as a test case generator and oracle.

@ Models are effective for testing behavior: ongoing activity that
may exhibit history-dependence and nondeterminism.

@ Represent behavior with traces: sequences of actions with
arguments.

@ Describe finite behaviors with FSMs, infinite behaviors with
model programs.

@ Exploration generates an FSM from a model program for
visualization, safety and liveness analyses, or offline test
generation.

e Composition combines programs by synchronizing shared
actions and interleaving unshared actions.

@ To validate a model program, compose it with FSMs that
represent forbidden and allowed scenarios.
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Testing
@ Automated testing requires scenario control to limit the
generated tests.

@ To achieve scenario control, compose the contract model
program with a scenario machine.

@ The test harness translates between the abstract model
program and the implementation.

o Offline test generation depends on exploration, with all its
limitations.

@ On-the-fly testing can generate indefinitely long, nonrepeating
test runs for nondeterministic systems.

@ On-the-fly testing can use a programmable strategy to
increase coverage.
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Industrial experience seems to be limited to post hoc modeling by
test engineers, to test implementations that are already built.

Modeling and analysis in this style might help during earlier project
stages, to assist in evaluating, improving, and documenting
designs, and to plan for tests.
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Model-Based
Software Testing
and Analysis
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Cambridge University Press, 2008
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Resources

NModel is a model-based testing and analysis framework for C#.
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