
1

Model-based Software Testing and Analysis
with C# and NModel

Jonathan Jacky

University of Washington
Seattle, USA

Obtain NModel and samples from:

http://www.codeplex.com/NModel

http://staff.washington.edu/jon/modeling-
book/mbta-samples/

(all one URL with no break)

2

NModel design goals

• Acceptability
– Familiar modeling language, programming environment

• Simplicity, stability, teachability
– Core ideas of central importance, permanent value
– Fundamentals more important than state of the art BUT

innovative features included where they permit simplicity
• Lightweight, few dependencies

– Only C#, .NET, no special compiler or runtime
– Does not require Visual Studio

• Minimal built-in functionality
• Extensible through user programming
• Platform for research

NModel capabilities I:
Model-based testing

• Offline, deterministic
• On-the-fly, nondeterministic
• Optional programmable strategy using

coverage points
• Controllable and observable, whole

continuum
• Simple, flexible test harnessing
• Concurrent systems (partial order)
• Scenario control to limit testing to interesting

scenarios

3

NModel framework
• Library for writing model programs and

tools

• Three simple command line tools
written using the library:

– mpv: model program viewer, visualization
and analysis

– otg: offline test generator, by FSM traversal

– ct: conformance tester, test runner for both
offline and on-the-fly tests

Demo: Traffic light
• Sample traces
• Namespace
• Finite domain here
• State
• Enabling conditions
• Actions, attributes
• ModelProgram, factory method
• mpv, command line arguments, “response files”
• Exploration, simulation (animation)
• Terms
• Alternative notation for FSMs (multiple languages)

4

Traces are the key
• The purpose of a model program is to generate

and check traces

• Trace (or run): a sequence of actions from the
initial state to an accepting state

• Actions, units of behavior that precede in discrete
steps

• Actions may have arguments
• Specification (contract): describes all valid traces
• Scenario: describes some (maybe just one)

interesting traces
• (Demo: Traffic light)
• (more example traces on ms pps 75, 85, 149 etc.)

Actions and arguments

• Choice of actions and arguments determines
the level of abstraction.

• Example: API
– Actions are method calls and returns, arguments

are method arguments and return values

• Example: network protocol
– Actions are message types, arguments are

message contents (fields)

5

Model programs

• Contract model program
– Purpose: generate all valid traces, check any trace
– Usually written in C#
– Methods correspond to actions

• Scenario model program
– Purpose: describe some (maybe just one) traces

for testing or analysis
– Usually written as FSM (term representation of

graph)
– Transitions (arcs and labels) correspond to actions

Demo: Client/Server (1)

• Based on embedded control system: remote
instrument logger (ms page 14)

• Client, server communicate over TCP/IP
socket

• Implementation defect: receive buffer too
small, results in history-dependent failures

• Purpose of model: automatically generate test
suite complex enough to reveal defect

• Really a reactive system, but for now test in
sandbox where all actions are controllable

6

Demo: Client/Server (2)

• Implementation (with defect)
• Sample trace for sandbox testing (ms p. 75)
• Contract model program
• Finitize with [Domain]
• Explore contract model program

– Many interleavings
– Dead states

• Offline test generation by traversing contract
model program, otg + mpv
– Split actions for call/return

Demo: Client/Server (3)

• Stepper (test harness)
– Simple, flexible, requires programming

– Can adapt to different implementation (static vs.
objects, .NET vs. something else, etc.)

– Works with terms

• Test runner
– Here executes test suite generated offline by otg

• Minimal transition coverage does not reveal the
defect! Motivation for on-the-fly testing

7

Demo: Client/Server (4)

• Use composition for scenario control

• Composition synchronizes on shared actions
and interleaves unshared actions

• Express scenarios in FSM notation

• Compose scenario with contract model

• Generate test suite from product
– Smaller test suite (one run) because many

interleavings have been eliminated

Client/Server Demo (5)

• On-the-fly testing

• Default random strategy

• Random tests on contract model
produce few interesting runs

• Random tests on product produce
interesting runs, reveal defect

8

Client/Server Demo (6):
What was not included

• Custom strategy (for longer runs)

• Reactive system (where server
responses are observable actions)

NModel capabilities II:
Design Analysis

• Essential for validating models prior to testing

• Alternative to specification languages, model
checking

• Safety, liveness analyses

• Both state-based (reachability) and scenario-
based (intersection of FSMs)

• Scenario control to limit analysis to interesting
scenarios

9

State-based analyses

• Safety analysis: are unsafe states ever
reachable?

• Liveness analysis: are accepting states
always reachable?

• Reactive system demo
– Based on safety-critical embedded system

Scenario-based analysis

• Is a given run possible?
– Simple user interface demo

• Is a given scenario possible?
– Reactive system demo

10

Structuring models

• Combine independently-written models
• Synchronize on shared actions, interleave unshared

actions
• Features: share state, C#, often used for parameter

generation and other precondition strengthening
• Composition: does not share state, usually FSMs, can

even be used for parameter generation
• Little experience but many opportunities (example:

Client/Server demo)

Modeling library data types

• Collections: Tuples, Sets, Maps, Bags,
Sequences, Value arrays
– Value types: immutable, structural equality
– Needed for state equality

• Objects: Labeled instance
– Implemented by field maps
– Abstract values, isomorph elimination is

possible

11

Notable implementation features

• Different modeling languages supported

• Term representation of actions

• Features, composition used for both
scenario control and structuring models

• Modeling library data types
– Value types for collections

-- Abstract values for objects

