Model-based Software Testing and Analysis
with C# and NModel

Jonathan Jacky

University of Washington
Seattle, USA

Obtain NModel and samples from:

http://www.codeplex.com/NModel

http://staff. washington.edu/jon/modeling-
book/mbta-samples/
(all one URL with no break)




NModel design goals

Acceptability

— Familiar modeling language, programming environment
Simplicity, stability, teachability

— Core ideas of central importance, permanent value

— Fundamentals more important than state of the art BUT
innovative features included where they permit simplicity

Lightweight, few dependencies
— Only C#, .NET, no special compiler or runtime
— Does not require Visual Studio

Minimal built-in functionality
Extensible through user programming
Platform for research

NModel capabilities I:
Model-based testing

Offline, deterministic
On-the-fly, nondeterministic

Optional programmable strategy using
coverage points

Controllable and observable, whole
continuum

Simple, flexible test harnessing
Concurrent systems (partial order)

Scenario control to limit testing to interesting
scenarios




NModel framework

Library for writing model programs and
tools

Three simple command line tools
written using the library:

— mpv: model program viewer, visualization
and analysis

— otg: offline test generator, by FSM traversal

— ct: conformance tester, test runner for both
offline and on-the-fly tests

Demo: Traffic light

Sample traces

Namespace

Finite domain here

State

Enabling conditions

Actions, attributes

ModelProgram, factory method

mpv, command line arguments, “response files”
Exploration, simulation (animation)

Terms

Alternative notation for FSMs (multiple languages)




Traces are the key

» The purpose of a model program is to generate
and check traces

» Trace (or run): a sequence of actions from the
initial state to an accepting state

» Actions, units of behavior that precede in discrete
steps

« Actions may have arguments
» Specification (contract): describes all valid traces

» Scenario: describes some (maybe just one)
interesting traces

» (Demo: Traffic light)
» (more example traces on ms pps 75, 85, 149 etc.)

Actions and arguments

» Choice of actions and arguments determines
the level of abstraction.
+ Example: API

— Actions are method calls and returns, arguments
are method arguments and return values

« Example: network protocol

— Actions are message types, arguments are
message contents (fields)




Model programs

+ Contract model program
— Purpose: generate all valid traces, check any trace
— Usually written in C#
— Methods correspond to actions

« Scenario model program

— Purpose: describe some (maybe just one) traces
for testing or analysis

— Usually written as FSM (term representation of
graph)
— Transitions (arcs and labels) correspond to actions

Demo: Client/Server (1)

« Based on embedded control system: remote
instrument logger (ms page 14)

+ Client, server communicate over TCP/IP
socket

+ Implementation defect: receive buffer too
small, results in history-dependent failures

* Purpose of model: automatically generate test
suite complex enough to reveal defect

» Really a reactive system, but for now test in
sandbox where all actions are controllable




Demo: Client/Server (2)

Implementation (with defect)

Sample trace for sandbox testing (ms p. 75)
Contract model program

Finitize with [Domain]

Explore contract model program

— Many interleavings
— Dead states

Offline test generation by traversing contract
model program, otg + mpv
— Split actions for call/return

Demo: Client/Server (3)

Stepper (test harness)
— Simple, flexible, requires programming

— Can adapt to different implementation (static vs.
objects, .NET vs. something else, etc.)

— Works with terms
Test runner
— Here executes test suite generated offline by otg

Minimal transition coverage does not reveal the
defect! Motivation for on-the-fly testing




Demo: Client/Server (4)

Use composition for scenario control

Composition synchronizes on shared actions
and interleaves unshared actions

Express scenarios in FSM notation
Compose scenario with contract model

Generate test suite from product

— Smaller test suite (one run) because many
interleavings have been eliminated

Client/Server Demo (5)

On-the-fly testing
Default random strategy

Random tests on contract model
produce few interesting runs

Random tests on product produce
interesting runs, reveal defect




Client/Server Demo (06):
What was not included

» Custom strategy (for longer runs)

» Reactive system (where server
responses are observable actions)

NModel capabilities II:
Design Analysis

+ Essential for validating models prior to testing

+ Alternative to specification languages, model
checking

+ Safety, liveness analyses

» Both state-based (reachability) and scenario-
based (intersection of FSMs)

» Scenario control to limit analysis to interesting
scenarios




State-based analyses

« Safety analysis: are unsafe states ever
reachable?

 Liveness analysis: are accepting states
always reachable?

» Reactive system demo
— Based on safety-critical embedded system

Scenario-based analysis

* |s a given run possible?
— Simple user interface demo

* |s a given scenario possible?
— Reactive system demo




Structuring models

+ Combine independently-written models

« Synchronize on shared actions, interleave unshared
actions

» Features: share state, C#, often used for parameter
generation and other precondition strengthening

+ Composition: does not share state, usually FSMs, can
even be used for parameter generation

+ Little experience but many opportunities (example:
Client/Server demo)

Modeling library data types

 Collections: Tuples, Sets, Maps, Bags,
Sequences, Value arrays
— Value types: immutable, structural equality
— Needed for state equality

» Objects: Labeled instance
— Implemented by field maps

— Abstract values, isomorph elimination is
possible

10



Notable implementation features

Different modeling languages supported
Term representation of actions

Features, composition used for both
scenario control and structuring models
Modeling library data types

— Value types for collections

-- Abstract values for objects

11



