
Part I

Overview

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-68761-4 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Excerpt
More information

http://www.cambridge.org/0521687616
http://www.cambridge.org
http://www.cambridge.org


1 Describe, Analyze,
Test

Creating software is a notoriously error-prone activity. If the errors might have
serious consequences, we must check the product in some systematic way. Every
project uses testing: check the code by executing it. Some projects also inspect
code, or use static analysis tools to check code without executing it. Finding the
best balance among these assurance methods, and the best techniques and tools
for each, is an active area of research and controversy. Each approach has its own
strengths and weaknesses.1

The unique strength of testing arises because it actually executes the code in an
environment similar to where it will be used, so it checks all of the assumptions that
the developers made about the operating environment and the development tools.

But testing is always incomplete, so we have to use other assurance methods also.
And there are other important development products besides code. To be sure that
the code solves the right problem, we must have a specification that describes what
we want the program to do. To be sure that the units of code will work together, we
need a design that describes how the program is built up from parts and how the
parts communicate. If the specification or design turns out to be wrong, code may
have to be reworked or discarded, so many projects conduct reviews or inspections
where people examine specifications and designs. These are usually expressed in
informal notations such as natural language and hand-drawn diagrams that cannot be
analyzed automatically, so reviews and inspections are time-consuming, subjective,
and fallible.

In this book we teach novel solutions to these problems: expressing and checking
specifications and designs, generating test cases, and checking the results of test
runs. The methods we describe increase the automation in each of these activities,
so they can be more timely, more thorough, and (we expect) more effective.

1 Definitions for terms that are printed in italics where they first appear are collected in the
Glossary (Appendix C).

3

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-68761-4 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Excerpt
More information

http://www.cambridge.org/0521687616
http://www.cambridge.org
http://www.cambridge.org


4 Describe, Analyze, Test

We also teach a technology that realizes these solutions: the NModel modeling
and testing framework, a library and several tools (applications) built on the C#
language and .NET. However, this technology is not just for .NET applications. We
can use it to analyze and test programs that run outside .NET, on any computer,
under any operating system. Moreover, the concepts and methods are independent
of this particular technology, so this book should be useful even if you use different
languages and tools.

In the following sections we briefly describe what the technology can do. Expla-
nations of how it works come later in the book.

1.1 Model programs

We express what we want the program to do – the specification – by writing another
much simpler program that we call a model program. We can also write a model
program to describe a program unit or component – in that case, it expresses part of
the design. The program, component, or system that the model program describes
is called the implementation. A single model program can represent a distributed
system with many computers, a concurrent system where many programs run at the
same time, or a reactive program that responds to events in its environment.

A model program can act as executable documentation. Unlike typical documen-
tation, it can be executed and analyzed automatically. It can serve as a prototype.
With an analysis tool, it can check whether the specification and design actually
produce the intended behaviors. With a testing tool, it can generate test cases, and
can act as the oracle that checks whether the implemenation passes the tests.

In the NModel framework, model programs are written in C#, augmented by a
library of attributes and data types. Methods in the model program represent the
actions (units of behavior) of the implementation. Variables in the model program
represent the state (stored information) of the implementation. Each distinct combi-
nation of values for the variables in the model program represents a particular state
(situation or condition) of the implementation.

Within a model program, we can identify separate features (groups of related
variables and methods). We can then perform analysis or testing limited to particular
features or combinations of features.

We can write separate model programs and then combine them using composi-
tion. Composition is a program-transformation technique that is performed auto-
matically by our analysis and testing tools, which can then analyze or test from the
composed program. Composition is defined (and implemented by the tools) in a
way that makes it convenient to specify interacting features, or to limit analysis and
testing to particular scenarios, or to describe temporal properties to check during
analysis.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-68761-4 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Excerpt
More information

http://www.cambridge.org/0521687616
http://www.cambridge.org
http://www.cambridge.org


Overview 5

To see how to write a model program, we can refer to traditional, informal speci-
fications and design documents. Sometimes there is already an implementation we
can inspect or experiment with. Sometimes a designer will write the model program
first, going directly from ideas to code. There is no algorithm or automated method
for deriving a model program – we have to use judgment and intuition. But there
are systematic methods for validating a model program – checking that it behaves
as we intended.

Writing a model program does not mean writing the implementation twice. A
model program should be much smaller and simpler than the implementation. To
achieve this, we usually select just a subset of the implementation’s features to
model. A large implementation can be covered by several small model programs
that represent different subsets of features. Within each subset, we choose a level of
abstraction where we identify the essential elements in the implementation that must
also appear in the model. Other implementation details can be omitted or greatly
simplified in the model. We can ignore efficiency, writing the simplest model pro-
gram that produces the required behaviors, without regard for performance. Thanks
to all this, the model program is much shorter and easier to write than the imple-
mentation, and we can analyze it more thoroughly. “The size of the specification
and the effort required in its construction is not proportional to the size of the object
being specified. Useful and significant results about large program can be obtained
by analyzing a much smaller artifact: a specification that models an aspect of its
behavior.”2

We use the term preliminary analysis for this preparatory activity where we
select the subset of features to include, identify the state and the actions that we will
represent, and choose the level of abstraction.

Writing a model program can be a useful activity in its own right. When we (the
authors) write a model program, we usually find that the source materials provided
to us – the informal specifications and design documents – are ambiguous and in-
complete. We can always come up with a list of questions for the architects
and designers. In the course of resolving these, the source materials are revised.
Clarifications are made; future misunderstandings with developers and customers
are avoided. Potential problems and outright errors are often exposed and corrected.

1.2 Model-based analysis

Model-based analysis uses a model program to debug and improve specifications and
designs, including architectural descriptions and protocols. Model-based analysis
can also help to validate the model programs themselves: to show that they actually

2 The quotation is from Jackson and Damon (1996).

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-68761-4 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Excerpt
More information

http://www.cambridge.org/0521687616
http://www.cambridge.org
http://www.cambridge.org


6 Describe, Analyze, Test

do behave as intended. The model program is expressed in a formal notation (a
programming language), so it can be analyzed automatically. Analysis uses the
same model programs and much of the same technology as testing.

Runs of the model program are simulations (or animations) that can expose
problems by revealing unintended or unexpected behaviors. To perform a simulation,
simply code a main method or a unit test that calls the methods in the model program
in the order that expresses the scenario you wish to see. Then execute it and observe
the results.

We can analyze the model program more thoroughly by a technique called explo-
ration, which achieves the effect of many simulation runs. It is our primary technique
for analyzing model programs. Exploration automatically executes the methods of
the model program, selecting methods in a systematic way to maximize coverage of
the model program’s behavior, executing as many different method calls (with dif-
ferent parameters) reaching as many different states as possible. Exploration records
each method call it invokes and each state it visits, building a data structure of states
linked by method calls that represents a finite state machine (FSM).3

The mpv (Model Program Viewer) tool performs exploration and displays the
results as a state-transition diagram, where the states appear as bubbles, the transi-
tions between them (the method calls) appear as arrows, and interesting states and
transitions are highlighted (see, e.g., Chapter 3, Figures 3.8–3.11).

The input to mpv is one or more model programs to explore. If there is more than
one, mpv forms their composition and explores the composed program. Composition
can be used to limit exploration to particular scenarios of interest, or to formulate
temporal properties to analyze.

It can be helpful to view the result of exploration even when you do not have a
precise question formulated, because it might reveal that the model program does
not behave as you intend. For example, you may see many more or many fewer
states and transitions than you expected, or you may see dead ends or cycles you
did not expect.

Exploration can also answer precisely formulated questions. It can perform a
safety analysis that identifies unsafe (forbidden) states, or a liveness analysis that
identifies dead states from which goals cannot be reached. To prepare for safety
analysis, you must write a Boolean expression that is true only in the unsafe states.
Exploration will search for these unsafe states. To prepare for liveness analysis,
you must write a Boolean expression that is true only in accepting states where the
program is allowed to stop (i.e., where the program’s goals have been achieved).
Exploration will search for dead states, from which the accepting states cannot be
reached. Dead states indicate deadlocks (where the program seems to stop running

3 Exploration is similar to another analysis technique called model checking.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-68761-4 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Excerpt
More information

http://www.cambridge.org/0521687616
http://www.cambridge.org
http://www.cambridge.org


Overview 7

and stops responding to events) or livelocks (where the program keeps running but
can’t make progress). The mpv tool can highlight unsafe states or dead states.

There is an important distinction between finite model programs where every
state and transition can be explored, and the more usual “infinite” model programs
that define too many states and transitions to explore them all. Recall that a state is
a particular assignment of values to the program variables. Finite programs usually
have a small number of variables with finite domains: Booleans, enumerations, or
small integers. The variables of “infinite” model programs have “infinite” domains:
numbers, strings, or richer data types.

To explore “infinite” model programs, we must resort to finitization: execute a
finite subset of method calls (including parameters) that we judge to be representative
for the purposes of a particular analysis. Exploration with finitization generates an
FSM that is an approximation of the huge true FSM that represents all possible
behaviors of the model program. Although an approximation is not complete, it can
be far more thorough than is usually achieved without this level of automation. Along
with abstraction and choosing feature subsets, approximation makes it feasible to
analyze large, complex systems.

We provide many different techniques for achieving finitization by pruning or
sampling, where the analyst can define rules for limiting exploration. Much of the
analyst’s skill involves choosing a finitization technique that achieves meaningful
coverage or probes particular issues.

1.3 Model-based testing

Model-based testing is testing based on a model that describes how the program is
supposed to behave. The model is used to automatically generate the test cases, and
can also be used as the oracle that checks whether the implementation under test
(IUT) passes the tests.

We distinguish between offline or a priori testing, where the test case is generated
before it is executed, and online or on-the-fly testing, where the test case is generated
as the test executes. A test case is a run, a sample of behavior consisting of a sequence
of method calls. In both techniques, test cases are generated by exploring a model
program. In offline testing using the otg tool (Offline Test Generator), exploration
generates an FSM, the FSM is traversed to generate a scenario, the scenario is saved
in a file, and later the ct tool (Conformance Tester) executes the test by running the
scenario. In online testing, ct creates the scenario on-the-fly during the test run. The
ct tool executes the model program and the IUT in lockstep; the IUT executes its
methods as exploration executes the corresponding methods in the model program,
and the model program acts as the oracle to check the IUT.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-68761-4 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Excerpt
More information

http://www.cambridge.org/0521687616
http://www.cambridge.org
http://www.cambridge.org


8 Describe, Analyze, Test

To use ct, you must provide one or more model programs and write a test harness
that couples your IUT to the tool. If you provide more than one model program,
ct composes them and explores their composition. In this context, composition is
usually used to limit exploration to particular scenarios. If you wish, you can write
a custom strategy in C# that ct uses to maximize test coverage according to criteria
you define.

We distinguish between controllable actions of the IUT that can be executed on
demand by the test tool and observable actions of the IUT that the test tool can only
monitor. Method calls are controllable actions, while events (including message
arrival and user’s input such as keystrokes and mouse clicks) are observable actions.
Observable actions are usually nondeterministic: it is not possible for the tester
to predict which of several possible observable actions will happen next. We can
classify systems by their controllability and determinism. Closed systems are fully
controllable and deterministic. Reactive systems have both controllable and observ-
able actions. Some systems are uncontrollable, with only observable actions; a log
file is a simple example of such a system.

Some test tools can only handle closed systems. Such tools can be used to test
reactive systems by creating a sandbox where normally observable actions are made
controllable by the test harness (which can be made to generate messages or events
on demand). But a sandbox is not realistic and is not always technically feasible.
The ct tool can accommodate observable events, which means, for example, that it
can test an IUT at one end of a network connection. On-the-fly testing works well
for reactive systems because it can deal efficiently with nondeterminism.

1.4 Model programs in the software process

Model programs can change the way we develop software. We can begin checking
and testing development products earlier in the project.

To see how this works, it is helpful to represent software project activities and
schedule in a V-diagram (Figure 1.1). The horizontal axis represents time, beginning
with the project concept at the left and ending with the product delivery on the right.
The vertical axis represents the level of integration, with the entire product at the
top, and the smallest meaningful units of software (classes and other types in C#)
at the bottom. A traditional project begins at the upper left with a product concept,
then works down the left side of the V, creating a specification that describes what
the product should do, and a design that describes how the product should be built
up from units. At the bottom of the V, developers code and test individual units.
Then the project works up the right side, integrating and testing larger collections
of units, until the complete product is delivered. (In projects with frequent releases,
there can be a V-diagram for each release.)

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-68761-4 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Excerpt
More information

http://www.cambridge.org/0521687616
http://www.cambridge.org
http://www.cambridge.org


Overview 9

��

�

�

Unit testing

Component testing

System testing

Delivery

Code

Design

Specification

Concept

�

�

�
Rework

Rework

Re.

Figure 1.1. V-diagram showing traditional software project activities and schedule.

The V-diagram shows how each kind of testing activity (on the right side) is
supposed to check one kind of development product (at the same level on the left
side). This reveals the problem with traditional sequential development: the products
that are produced first (the specification and high-level system design) are tested last
(by tests on the integrated system, using scenarios suggested by customers or their
representatives among the developers). Therefore, defects in these first products
might not be discovered until much later, after code has been written from them.
The diagram shows how the costs of rework escalate as defects are discovered later
in the project.

It would be better if we could check each product as soon as it is produced. We
would like to check and correct the specification and design as we work down the
left side of the V, before we code the units. Then, soon after the unit tests pass, the
integrated system should just work – with few unpleasant surprises.

Something like this is already being tried at the unit level (down at the point of
the V). In test-driven development, developers write each unit test case before its
code, and execute it as they code. When the code for each unit is completed, it has
already passed its unit tests.

Now it is possible to apply the same principle of immediate feedback to other
development products. Analysis with model programs can check specifications and
designs, much like unit tests check code, so problems can be detected and fixed
immediately (Figure 1.2).

Analyzing and testing models is common in many branches of engineering, where
builders cannot depend on testing the end product in order to expose major defects.
No one plans to crash an airplane or collapse a bridge! Instead, engineers create
mathematical models – such as block diagrams for circuits and control systems, or

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-68761-4 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Excerpt
More information

http://www.cambridge.org/0521687616
http://www.cambridge.org
http://www.cambridge.org


10 Describe, Analyze, Test

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�
�

�
�

�
�

�
�

�

Unit testing

Model-based component testing

Model-based system testing

Delivery

Code with
unit tests

Design with
modeling and analysis

Specification with
modeling and analysis

Concept

��
���

�

Rework

��
�

Rework

��
�

Re.

Figure 1.2. V-diagram showing opportunities for model-based testing and analysis.

finite element models for structures – and even build physical models (to test in
wind tunnels, etc.). Our model programs are analogous to the models used in other
branches of engineering.

Model-based analysis and testing are each useful in their own right. A project
might use either or both. Figure 1.2 shows several opportunities for using them,
but a particular project might take only one or two. We know of projects where
architects used model programs just to debug protocols early in the project, and
testing was performed in the usual way. We know of others where testers wrote
model programs just for testing components that had been specified and designed
in the usual way. Moreover, we can model specifications (by modeling the system
behavior visible to users) or designs (by modeling the behavior of components only
visible to developers) or both (as shown in Figure 1.2). It is not necessary to model
everything; projects typically focus their modeling efforts on the system behaviors
or components that are the most novel, critical, or intricate.

Although model programs can be helpful during specification and design, this
book emphasizes model-based testing. Many of our examples assume that an im-
plementation is already in hand or on the way, so the model is based on the imple-
mentation (not the other way around). We usually model subsets of features that are
about the right size for a tester’s work assignment (a typical test suite). We usually
choose a level of abstraction where actions in the model correspond to actions in the
implementation that are easy to observe and instrument (such as calls to methods in
its API).

Moreover, we believe that the tester’s point of view is especially helpful in keep-
ing the models grounded in reality. In order to perform conformance testing, which
involves lockstep execution of the model with the implementation, the tester must
write a test harness that couples the implementation to the model through the test

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-68761-4 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Excerpt
More information

http://www.cambridge.org/0521687616
http://www.cambridge.org
http://www.cambridge.org


Overview 11

tool. This test harness makes the correspondence between the model and the im-
plementation completely explicit. Writing this harness, and the subsequent lockstep
execution itself, closes the loop from the model back to the implementation. It vali-
dates the model with a degree of thoroughness that is not easily achieved in projects
that do not use the models for testing.

1.5 Syllabus

This book teaches how to write and analyze model programs, and how to use them
to test implementations. Here is a brief summary of the topics to come.

The book is divided into four parts. The end of each part is an exit point; a reader
who stops there will have coherent understanding and tools for modeling, analysis,
and testing up to that level of complexity. Presentation is sequential through Part III,
each chapter and part is a prerequisite for all following chapters and parts. Chapters
in Part IV are independent; readers can read one, some, or all in any order. Each
part concludes with a guide to futher reading, an annotated bibliography of pertinent
literature including research papers.

Part I shows what model-based testing and analysis can do; the rest of the book
shows how to do it.

Chapter 1 (this chapter) is a preview of the topics in the rest of the book.
Chapter 2 demonstrates why we need model-based testing. We exhibit a software

defect that is not detected by typical unit tests, but is only exposed by executing
more realistic scenarios that resemble actual application program runs. We preview
our testing techniques and show how they can detect the defect that the unit tests
missed.

Chapter 3 demonstrates why we need model-based analysis. We exhibit a program
with design errors that cause safety violations (where the program reaches forbidden
states), deadlocks (where the program seems to stop running and stops responding to
events), and livelocks (where the program keeps running but can’t make progress).
We preview our analysis and visualization techniques and show how they can reveal
the design errors, before beginning any testing.

Part II explains modeling, analysis, and testing with finite models that can be
analyzed exhaustively. (The systems that are modeled need not be finite.)

Chapter 5 introduces the modeling library and explains how to write model pro-
grams.

Chapter 6 introduces our primary model-based analysis technique, exploration.
We introduce the analysis and visualization tool, mpv (Model Program Viewer), and
explain how it can reveal errors like those discussed in Chapter 3.

Chapter 7 introduces features and model composition, which are used to build
up complex model programs by combining simpler ones, to focus exploration and

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-68761-4 - Model-Based Software Testing and Analysis with C#
Jonathan Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte
Excerpt
More information

http://www.cambridge.org/0521687616
http://www.cambridge.org
http://www.cambridge.org

