ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2644718
Approaches to proof in Z - or - Why effective proof tool support for Z is hard

Article - February 1970

Source: CiteSeer

CITATIONS READS
2 8
1 author:

Andrew Martin
University of Oxford

134 PUBLICATIONS 1,995 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

poeet Trusted Cloud Computing View project

ot Cyber Supply Chain Risks in Cloud Computing View project

All content following this page was uploaded by Andrew Martin on 18 November 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2644718_Approaches_to_proof_in_Z_-_or_-_Why_effective_proof_tool_support_for_Z_is_hard?enrichId=rgreq-af61632fc2a0d40f14f729602d177a42-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ3MTg7QVM6Mjk3MDA5NzczODU4ODE5QDE0NDc4MjQwNTYyODM%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2644718_Approaches_to_proof_in_Z_-_or_-_Why_effective_proof_tool_support_for_Z_is_hard?enrichId=rgreq-af61632fc2a0d40f14f729602d177a42-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ3MTg7QVM6Mjk3MDA5NzczODU4ODE5QDE0NDc4MjQwNTYyODM%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Trusted-Cloud-Computing?enrichId=rgreq-af61632fc2a0d40f14f729602d177a42-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ3MTg7QVM6Mjk3MDA5NzczODU4ODE5QDE0NDc4MjQwNTYyODM%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Cyber-Supply-Chain-Risks-in-Cloud-Computing?enrichId=rgreq-af61632fc2a0d40f14f729602d177a42-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ3MTg7QVM6Mjk3MDA5NzczODU4ODE5QDE0NDc4MjQwNTYyODM%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-af61632fc2a0d40f14f729602d177a42-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ3MTg7QVM6Mjk3MDA5NzczODU4ODE5QDE0NDc4MjQwNTYyODM%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew_Martin37?enrichId=rgreq-af61632fc2a0d40f14f729602d177a42-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ3MTg7QVM6Mjk3MDA5NzczODU4ODE5QDE0NDc4MjQwNTYyODM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew_Martin37?enrichId=rgreq-af61632fc2a0d40f14f729602d177a42-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ3MTg7QVM6Mjk3MDA5NzczODU4ODE5QDE0NDc4MjQwNTYyODM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Oxford?enrichId=rgreq-af61632fc2a0d40f14f729602d177a42-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ3MTg7QVM6Mjk3MDA5NzczODU4ODE5QDE0NDc4MjQwNTYyODM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew_Martin37?enrichId=rgreq-af61632fc2a0d40f14f729602d177a42-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ3MTg7QVM6Mjk3MDA5NzczODU4ODE5QDE0NDc4MjQwNTYyODM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew_Martin37?enrichId=rgreq-af61632fc2a0d40f14f729602d177a42-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ3MTg7QVM6Mjk3MDA5NzczODU4ODE5QDE0NDc4MjQwNTYyODM%3D&el=1_x_10&_esc=publicationCoverPdf

SOFTWARE VERIFICATION RESEARCH CENTRE
SCHOOL OF INFORMATION TECHNOLOGY

THE UNIVERSITY OF QUEENSLAND

Queensland 4072
Australia

TECHNICAL REPORT
No. 97-34
Approaches to proof in Z
Why effective pro_o1? ':o_ol support for Z is
hard

Andrew Martin

November 1997

Phone: +61 7 3365 1003
Fax: +61 7 3365 1533
http://svrc.it.ug.edu.au

Note: Most SVRC technical reports are available via an-
onymous ftp, fromsvrc.it. uq. edu. au in the directory

/ pub/ techreports. Abstracts and compressed postscript
files are available viat t p: // svrc.it. uq. edu. au

Approaches to proofin Z
Why effective proof tool support for Z is hard

Andrew Martint

Abstract

Various attempts at supporting proof in Z are described énliterature. This
paper presents a survey of these approaches, and the ungesgmantic issues
which make proof in Z a non-trivial task. The draft Z Standardsed as a normat-
ive reference. Special care is given to an account of thelipeities of Z schemas.
The proof tools surveyed divide into two groups: custom-enadplementations
for supporting Z, and encodings of a Z logic within some otbgical framework.
The latter are further subdivided into ‘deep’ and ‘shall@mbeddings. The broad
conclusion is that none of these approaches is a clear watraesent, but that
each may be able to benefit from the others.

Keywords

formal proof, semantics, proof tools, Z notation, schemas

1 Introduction

In the software engineering world, Z (Nicholls, 1995) has gained ssigréficant re-
spect as a notation for specification (see for example, (Bowen et al., 19T ygry
few projects undertake reasoning about their specifications—either to valluate t
or to refine them formally towards code. The reason usually cited for chgosit to
conduct such reasoning is one of diminishing returns: formal specditatire widely
believed to improve the quality of delivered systems without sigaift increase in
cost; formal validation and refinement appears to be very expensive, witiveglat
few benefits to be gained.

No doubt, a major reason why there is little use of Z in this way is bextiese are
few strong tools for proof in Z. (Specification, by contrast, is welpported by some
excellent type-checking tools.) Conversely, few have been willingweshin the pro-
duction of such tools because there appears to be little market for thdrar fotmal
methodologies have been more successfully applied with extensiveupebrtt Why
have proof tools for Z been slow in appearing?

It is worth noting in passing that type-checking in Z has been very suctesséu
simple semantic check of well-formedness for specifications. This is jalgelause
Z has a simple decidable Hindley-Milner type system (Spivey andr§udf@90) which

*SVRC, School of Information Technology, The University ai€gnsland, Brisbane 4072, Queensland,
Australia.apm@t . ug. edu. au
1B (Abrial, 1996), for example, has developed alongside ttarlits application.

can be statically checked. Moreover, a tool lfkezz is able to use Z's abbreviation
mechanisms to construct a system of subtypes, for helpful error diagn¢Spivey,
1996). Z's approach with a decidable type system may be contrasted waitbftRVS
(see Sections 2.2.1 and 3.1.9).

To the casual observer, the Z notation is merely a style for writing $esfifirst-
order predicate calculus and set theory. This is of course true in princpk a first-
order language, and a Z specification can be mechanically transformed into a aollecti
of classical predicates. Classical logic and set theory are well-understoiod,tand
thus producing proof tools for Z does not sound like an interedtiagretical research
problem.

We appear to be faced here with a paradox. Z is constructed using an easy theory,
yet it is too expensive to produce useful tools for it. Many researclept® have
considered aspects of proof tool support for Z, and a few productiguabls have
been produced. Whilst hard figures are not available, anecdotal evidencetsubges
uptake of these tools is small.

1.1 Semantics for Z

That Z is not quite the easy theory it first appears to be is evidenced byuthéer
of different accounts of the semantics of Z which are available. The seminkloamo
Z semantics comes from Spivey (1988). This has been adapted considerabig to g
the semantics now presented in the Z Standard. The standard itself mayaloéeet
as presenting two views of the semantics: the definitional (normatare)ppthe doc-
ument gives a denotational model for Z using the relational calculus; amiative
annex offers a logical theory which includes a deductive system for regsabbut Z
specifications; it might be regarded as an axiomatic semantics in its ol fidpis
second account is intended to be consistent with the first, though nivatsmi (since
it takes decisions over matters which the denotational description deébelaaves
loose—the issue of undefinedness, for example). A formal proof ofdiess (modulo
these issues) is envisaged, though not published at present.

Each proof tool described in this paper also effectively defines its own sarsanti
for Z. For many, the correspondence with the standard is very closeghhayroof
of soundness or faithfulness is not usually offered. For othersietsemblance with
Standard Z will merely be a passing likeness. Many texts also providesalsmf a
semantics for Z, offering either a (paper-based) proof system, or samedfomodel
theory. Again, some of these are close to the Standard, (Woodcock aresPES96),
others approach from a very different angle, e.g. (Hodges, 1995).

1.2 Ouitline of the paper

The next section will explain the main challenges encountered in supggnoof in

Z. Above all, the Zschema notatiorfwhich is the mechanism by which complexity

is managed in Z specifications) appears to be the most problematic. Z schemas are
unlike the usual terms of logic and set theory, and providing deepostifiy them is
non-trivial.

A schema consists of declarationof some typed variables and a (collection of)
predicatés) over those variables (and other variables of the specification). It eorres
ponds to a generalisation of a record type in programming, but inlpogustyle may
also for example describe the global variables of a system, operatiotiosa vari-
ables, or the promotion of one such (sub-)system into another.

Transformation into pure first-order predicate logic is possiske(the accounts
of various systems which do this, below), but almost entirely oifats the original
specification, and doing so soundly is again non-trivial. This semgapiccan be seen
in something as seemingly trivial as hewbstitutionworks.

The second part of the paper surveys and attempts to classify the leadingelpgs
to these problems. These may be classified into two major groups—iHuoske sup-
port Z by encoding its semantics within an existing system (a logieahéwork, or
generic theorem-prover); and those which have been implemented from saspeh
cially for the task of supporting Z. In both groups we find a varietyexperimental
projects, as well as product-quality tools.

One of the original goals of the Z standardisation activity was to ptera widely-
accepted means of reasoning about Z specifications. In a final section, we consider
whether the emerging Z standard may assist in solving some of theepnslautlined
here.

Spivey and the Standard Some of the problems which will be described here are a
result of the liberal approach taken by the Z Standard. The Z of Spivesfer@1ce
Manual (1992) is more restrictive (in the use of arbitrary schemas agssipns, for
example) and thereby avoids some (though not all) of these issues.

To some extent, the restrictions imposed by the Z Reference Manual comcbsp
to good stylistic advice for aiding readability and simplifying pfoFor a variety of
reasons, the Standards committee has chosen to take a more liberal apprdaath, an
length a reasonable semantics for it has been defined. It will be for thetos#eside
if the greater freedom of expression is worthwhile.

2 Challenges in supporting proofin Z

This section explains some of the reasons why supporting Z is n@ltr The first
subsection deals with direct usability issues; the second with mofeuprd semantic
matters.

2.1 Problems of Syntax and Methodology

Much of Z is a stylised way of writing traditional mathematics. The riotais terse
because mathematicians have generally aimed for conciseness of notation itoorder
ease both the discovery of proofs and their recording. To reproduceothéian ac-
curately requires a moderately advanced typesetting/word-processing syStber
specification notations are deliberately text-based (e.g. the annotatiSBRARK Ada
(Barnes, 1997)). Many systems use a special syntax for specification, athe &ion
proof. This complicates their use, and increases the potential for mistakes.

The concrete syntax of the specification/proof is of no theoretical intekéstv-
ever, in the software engineering context it is quite significanti\iorreasons:

1. Changes of notation are a barrier to understanding. Whilst mostepampable
to cope reasonably well with different syntaxes for input, printed/sgh spe-
cifications, and tool interactions, the cost of learning all three is hagid, the
scope for mistakes very great. For example, two closely-related tools ede us
regularly by the author; each uses a different binding priority foraserinfix
operators. The result is that many hours have been wasted because terms which
look the same in both systems actually have radically different meanings.

2. Z specifications are commonly used in high-integrity developmetdse, it is
most important that procedures for configuration management and version con
trol are followed. Changes are inevitable during a project; eitheralabanging
requirements, or the discovery of errors. The propagation of changasgthr
specification documents, validations, refinements, and code must be recorded
and traceable.

If a collection of tools is used which do not share common input forjriaes
development process will be hard to manage. Automated translation frem on
form to another is usually possible, but the retention of commemésfiumbers

etc. may be venad hoc Moreover, the status of proofs needs to be part of
the managed configuration, so that the extent of changes in requirements and
specifications can be accurately determined.

These problems are not unique to Z, but do distinguish the proiftgdh soft-
ware engineering from the more general concerns of the proof tool contynuni
(Because proofs in group theory, say, are unlikely to be subject to apagi
sumptions.) They are the subject of ongoing research.

These concerns seem to mitigate against use of off-the-shelf proof tools

Notice how well a tool likefuzz fares against these criteria. It can be inserted in
the process with virtually no overhead (provided the specifiersiigi)Land it can be
run as a batch job in order to achieve ‘regression testing’ for specificatid design
documents.

An alternative approach is to use a text-based version of Z for specificatidn
interaction with tools. The Standard offersamail lexisfor such purposes, but this is
yet to be widely taken up. The Cogito project (Bloesch et al., 1994) defisn@svin
Z subset (calledSum) which is written using simpleascii characters. Unfortunately,
interaction with Cogito’s theorem prove&rgouses a different (though closely-related)
syntax.

A common method for managing complexity in development is to use autaod
system. Various module schemes have been proposed3dou,none has achieved
widespread use. The Z Standard has a notiogecfion which provides the simplest
possible form of modularity but offers no formal support for geparate development
of modules—in particular, there is no separation of name-spaces.

Cogito has an extensive module system (Nickson, Traynor, and U88$), with
the module structure of the specification reflected in a theory structtineiproof tool.
Nevertheless, this modularity does not support hiding, and sotialile to guarantee
safe data refinement without restrictions on module usage.

2.2 Technical (Semantic) Problems

As we have observed, there are a number of different accounts of the sesnafri.
The issues raised here are discussed relative to the Z Standard’s accacinirvmhost
cases coincides with Spivey’s (1988). Of course, the problems encountiirdelpend
to some extent on the underlying framework (logical or computatjanalhich the
semantics are to be expressed. The genericity of most of the operatesdrtaolkit,
for example, is problematic in some systems.

2Sum is not strictly a subset of Z: it also extends the langwéitieannotations to support validation, and
an extensive module system.

30ne way to viewobject orientatioris as a style for modularity. Various object-oriented Z tiotzs have
been proposed, most are surveyed in (Stepney, Barden, ame£4992).

The issues highlighted here are problems common to most systeneagmning
about Z specifications.

2.2.1 Partial Functions

Common Z style makes heavy use of partial functions — as does the Z maitemat
toolkit. It is therefore important that the user of Z should enstia whenever a
function is applied, it is defined at its point of applicattb@/EVES has made such a
check largely automatic—thus permitting it to be part of a test of wellrfiness, like
type-checking. (Of course, in general, the test is undecidable, but for nraotiqal
specifications, this is not a problem.) Apparently, few real specificapass this test
(Saaltink, 1997).

Most proof systems for Z incorporate the well-definedness check as ph# oile
for function application. In the logic of the Standard, for example have

F'k(e,u) efAVy:foeyl=e=>y2=u
F'tu=fe

[y & deUdu]

Such frequent checks often serve to complicate proofs, but present no ttedatiffi-
culty. A good theorem-prover is even able to store such results foe wwherever they
are encountered.

It is worthwhile to contrast here the approach taken in PVS, where every fu
tion must be total. This is achieved using a system of subtypes,esprtiblem is
transformed into one of type-checking (and so the PVS type system eciatadble;
demonstrating type-correctness typically entails proof).

If Z partial functions are applied outside their domains, the resuleddg on the
particular flavour of Z semantics being used. A common error is to applgehear-
dinality function# to a set which is not known to be finite:

‘ set : PN
‘ #set < 10

The function# is partial: its result is not defined for infinite sets, so the trutlhugaif

#set < 10 is not determined. The standard has been careful to avoid giving a value
to such expressions, so that any reasonable interpretation can be usddlldvhiag
principle, succinctly described by Peter Lupton (1991), is strongly enacmad

Undefinedness should not be exploited in specifications.

The logic presented in the standard offers one particular way to deal istissue®
All terms denote values (so for any expressiowe have that = t), but in order
to replace a function application with its result, the expression baeppdied must be
shown to be functional at the point of application (as in the rule aboxejelated
resolution is that embodied by the Z/EVES princigtan’t ask

Observe that Z differs from VDM in this area in that Z's predicates are daksi
either ‘true’ or * false’—whereas VDM uses a carefully-crafted logic of partial func-
tions, with an extra ‘non-value’ logical value.

“More accurately, a sufficient check is that wheneveelation is applied to an argument, it defined
andfunctionalat that point.

5Observe that the logic has the status of ‘informative’ instendard. This is contrasted with the ‘norm-
ative’ (definitional) parts, wherein function applicatiangiven a deliberately loose definition.

Although based on Z, Cogito follows VDM more closely in this regateh extra
value is added to the underlying model. The vaJughad’) is taken by any improper
term. It is not a member of any type; indeed, it is not even a ZF set. Masttps
are strict with respect to ‘bad’, but in logical terms it forms an equivalerass with
‘false’.

A detailed study of the possible treatments of undefinedness in speciiicatia-
tions is outside the scope of this paper. Our aim here is merely to fegan issue
which complicates reasoning in Z. The problem is one both of lag@tmethodology.
A good survey of approaches can be found in (Brien, 1995).

2.2.2 Z Schemas

Z schemas are certainly the most interesting feature of the notation. filyby be
viewed simply as macros giving a name to a combination of declarationsraditp
ates over the declared variabfeslowever, in most accounts of Z semantics, schemas
have a meaning of their own. In their greatest generality, Z schemas areuguite
like any terms normally arising in classical logics. This unusual natfiechemas is
what makes producing a logical system for Z using familiar componerdsjuite a
challenging task.

Roles for Schemas Z has three major syntactic classes: declarations, expressions,
and predicates. In general, these are strictly non-overlapping (there dreofean-
valued functions, for example, to be used as predicatesh schema may appear in
any of these roles.

A simple Z schema might be written

_ S
z:N

r <y

Writing such a declaration in a Z specification is equivalent to deffhing
S==[z:N|z<y]

The right-hand side of this declaration is a schema in ‘horizontal &'tnThis is an
instance of a schema used asapressionA schema used as an expression denotes a
set ofbindings—see below. Schema expressions may be combined using the operators
of theschema calculysso if we have schemdg; and T, we may define schem@&,

say, as

T==T,V T,

This approach is commonly used when schemas describe operatignsay denote
the successful operation, affd the error case(s).
A schema can also be used as a declaration:

6This was, initially, precisely the meaning, according tango A paper by Brien (1994) surveys the
historical development of Z.

7Observe that in (Spivey, 1992) schema declarations areduted using=, and ‘abbreviations’ using
—==. Standard Z uses the second symbol for both purposes.

‘ z:N

‘ <y

This ‘axiomatic declaration’ uses the same schema as before, but now inEtpad @

a name to the schema, it is used directly to define a global varigbéend place a
constraint on its value. The same declaration occurs between the quantifiéreand t
in the following predicate:

Vz:N|z<yez=0
Given the declaration above, this predicate may also be written
VSez =0

Thirdly, a schema can be used as a predicate. Again, using the declaration above,
we may write

Vz:X eSS
This would be equivalent (in most cases) to writing

Ve: XexeNAz<y

Free variables, etc. In these various roles and forms, the schema has different prop-
erties. The variables declared in a schema are ‘free’ when the schema is used as a
predicate, and something akin to ‘bound’ when it appears in an expresgiertefims
‘bound’ and ‘free’ do not have quite their traditional meanings, have

The standard uses the notatiaf(s) and®(p) to denote the free variables of ex-
pressiore and predicate respectively. We have

¢lz :N|z <y] ={y}

(Strictly, N and(_ < _) are also free variables, but we shall overlook that detail here.)
Whereasg(S) = {S}. Moreover,

Slz:N|z<y]={z,y}

but®(S) = {S,z}.

There are two points to note here. First, the name of the schema igarpfo
name. It may be subject to quantification, for example (as a simple variablie,
VS :PNeb e S, orevenasaschem&sS : Plz : N |z < y]ebe), and
so its meaning must be determined by context, and not by a global tstibsti(like
a macro). Secondly, the use pfin the definition ofS is fixed as they which was in
scope at the point of declaration. Thus whgiis used as a predicatg,is not a free
variable.

The consequence of this is that a schema reference (i.e. use of a schema rame lik
S as a declaration, predicate, or expressicannotin general simply be replaced by
its definition.

The challenge, then, in supporting this notation in a system set wgatmdth tradi-
tional notions of bound/free variables is that the free variables ofna &ee dependent
on context. Logical frameworks which provide facilities for efficienakation of free
variables but do not offer access to the context will not be able to stiposemantics
of Z in its greatest generality. Approaches to this problem are survey@edation 3.1.

Bindings An alternative approach to understanding Z schemas is to consider bind-
ings. When a schema is used as an expression, it denotes a set of bindipgfgs

from namego values For a schemd” with componentvariables, . . ., t,, we would

write an element ofl" as

<‘ t] == 6],...,tn == én ‘)

Thus, ify had the valug when S was declared above, we would have

S={la==0)(s==1),0s==2)}

Bindings are a simple generalisation of tuplefzelledproduct rather than a cartesian
product), but, again, they are not common in logical frameworks. fidiive binding
for a schema is that one which maps each name to its corresponding valaeurtnt
context. For schemd, thisisé T'.

0T =(th==t,... . tn ==ty)

When a schema appears as an expression, then, it denotes a set of bindosgs—th
bindings which have the same alphabet (i.e. which declare/use the sanheaetes)
as the schema and give values to the variables in such a way as to make the g@redicat
part of the schema equivalent to true. When a sch&imappears as a predicate, it
denotes the predicate

0T e T

This predicate may be read as saying simply that the binding which mapariables
defined inT to their values in the current context is one which satisfies the declaration
and predicate parts df.

A schema which appears as a declaration can be viewed as introducing a binding
of that schema type, and using that binding as a local definition.

(VSOP) & (Vb:So (|etboP))

(subject to side-conditions to prevent variable capture). See belowdiscassion of
local definitions and substitution.

Semantics This view of a schema as a set of bindings is made concrete in the Stand-
ard’s semantics for schemas, where for a sché€mae have

(SY™ : Env < Situation

Here Env is theenvironmentthat is, a mapping of names to values, @itlation is
a mapping from names to type—value pairs (where the value must be a mehther
type). Thus in any given environment, the schema may denote a numbtradicsis.
Bindings are a simplification of situations in that they map simpyf names to values
(omitting the type part).

The denotation of a predicate is the set of environments in which thaicpteds
true. A schema used as a predicate is true in an environment iff that environment
contains a situation of the scherfia

Substitution Whilst bindings serve to complicate the language considerably, they
are also very useful for describing substitution in Z. This is a magotribution of
the paper of Woodcock and Brien (1992). Because the notion of free variatdes
context-dependent, so too must be any formulation of substitution

Z uses a dot to denote binding selection{so== 3, y == 4 |).y takes the value
4. We may promote this selection operator so that== ¢) , e denotes the result of
replacing every free occurrenceoin expressiore by ¢, and({ z == ¢) ® p denotes
the result of replacing every free occurrence:ah predicatep by ¢.2 More generally,
an arbitrary binding can be used as a substitution. This notation islyreeshorthand
for the local declaration which Spivey writes usileg. He notes thaket can be written
using other Z operators, so that for expressions

(letxy ==¢€1; ...; &, == e, @ €)
=(px:ty; ... Tty | T =e€1; ... Ty =€, @)

and for predicates

(letzy ==e1; ...; &, == e, o p)
SEmity; Tty T =e1; . Ty = €p @ D)

(subject to certain side-conditions in each case).
The short forms mentioned above permit the description of inferees for quan-
tifiers as follows:

FEvSeP r-b6esS
revoP

[AlE |

This is a generalisation of the traditional form, which would useaepientP[e/]
in the conclusion of the rule. The rule says that a universal quantdicatiay be spe-
cialised by providing a binding which satisfies its declaration part, assigning values
to each of the variables. The specialised version of the predicate is obtginsthgb
as a substitution int@.

Moreover, this version is context-sensitive in tthat P is to be evaluated in the
context of the declarations in® Clearly, for proof, a context-sensitive account of how
to simplify these substitution terms is required. This is preseintéttk Standard.

3 Possible Approaches to Supporting Proof in Z

A significant number of proof tools aiming to support proof in Z 6dbeen described
in the literature. The author would be pleased to hear of any not alreadyanedti
here.

One way to classify the various proof tools for Z is to distinguigtween those
which encode/embed Z within an existing system, and those which havernpks i
mented especially for supporting Z. The latter clearly have a better chanceeating
the concerns of Section 2.1. The dividing line is not always entiretyslisee, for
example, the description &rgoin Section 3.1.6 below).

Z tool summaries have been published previously by Parker (1991) tegd|8s
and Hulance (1994).

8The symbols differ § vs ®) in order to help disambiguate substitution into a schenmaiession and a
schema predicate: the results also differ, in general.

T is a sequence of Z paragraphs—schemas declarations, giterpsedicates, etc. The sequent form
T" + P should be read as ‘the specificatibris sufficient to derive the predicate.’

3.1 Encodings within a more general system

Many highly configurable proof support tools are available todamj&allow the user
to define a logical theory for a particular problem domain within a weltterstood
logic (e.g. the HOL system); others—the ‘logical frameworks'—piethre definition

of the logical system itself from scratch (e.g. Isabelle). This detail needorxern

us.

However, thelevel of the embedding is of interest. Some encodings are at the
syntactic level. A language of Z terms (term algebra) is defined withindlsédystem,
as are inference rules, such as those presented in the Z standard (logicaldreme
are best suited to this task). Alternatively, the embedding may be semaraviding
a mapping from (something close to) Z into some pre-existingcllgheory, such as
higher-order logic. Semantic embeddings may be further subdivideddeep’ and
‘shallow’ embeddings.

The paper of Bowen and Gordon (1994) discusses the issues involvatidoy
levels of embedding. In general there will be a continuum of possével$, rather
than a sharp division. Typically, the deeper the embedding, the maraetibe results
which may be proved. (A deep embedding might permit a proof of the coativity
of schema conjunction, say.) A shallow embedding may be good for gyoesults
about a particular specification, but nothing more general. The embeddimngk
| have called ‘syntactic’ are somehow the deepest of all, in that the logit=d of
(something like) Z are encoded, and little reliance is placed on the semahtios o
host logict®

A good reason for choosing to encode support for Z within a more gesgsal
tem is that these systems tend to be well-designed and efficient. Theyiheable
user communities with much experience of their use, and large librariestiés and
example theories available for direct re-use or minor adaptation.

Conversely, if one is concerned to demonstrate the soundness of onedingpco
or compliance to the Z Standard, such an encoding may present a major burden. A
system such as HOL will ensure the soundness of proofs which it pesgiut this
is useful only if the axiomatisation of Z introduces no inconsisterdpreover, the
transformation from Z into an alternative semantic framework mustusted (or the
chosen semantic model shown consistent with that of the Standard)e larel of
schemas, as discussed in Section 2.2.2, this can be particularly probldriveiby, the
majority of such frameworks will require considerable work if suggor Z syntax—
and user interaction using the same notation—is to be arranged.

3.1.1 zedB

zed (Neilson and Prasad, 1992) was an early attempt to support proof in Z th&ing
B-Tool. Because B’s set theory and logic is essentially identical to Zéspthnipula-
tion of Z expressions using B is very profitable. B does not suppersthema nota-
tion, however, so some tricks were employed to permit the simplifinati schema
expressions. The soundness of these was never fully explored.

B has now become much less general-purpose, so this is not a viable foplee i
mentation route.

10The term ‘syntactic embedding’ is the author’s inventionotiie that it is at the opposite end of the
spectrum from a syntactitansformation which generally accomplishes a shallow embedding.

10

3.1.2 Z/EVES

EVES is a relatively highly automated proof tool (compared to the ottaofisystems
described here) for predicate calculus and (untyped) set theory. The Z/B)4ESs
(Saaltink, 1997) translates Z specifications into the core language oSE&t sup-
ports the production of proofs about those specifications. Thetsasfithe application
of proof steps (typically large steps, due to the high degree of atton) are trans-
formed back into the Z notation.

As indicated above, considerable effort has been put into checking (in an aatbmat
manner wherever possible) that partial functions are applied within toerains—
with the perhaps surprising result that very many specifications checkegl ths tool
have failed.

An earlier paper on Z/EVES (Saaltink, 1992) explains some of the diffésuen-
countered in translating expressions involving schemas and binditathie untyped
base language of EVES, as one would expect from the account above. Nultibis
is presented there, but one has since been discovered so Z/EVES now caveitlyvir
the whole of Z. As with many of the systems described here, Z/EVESajisgpoor
performance when the number of variables in a schema becomes large (which may
happen surprisingly easily, due to Z's structuring schemes).

3.1.3 Z-in-Isabelle

Kraan and Baumann (1995) have produced a ‘deep semantic embedding’ ofaZ the |
gical framework Isabelle. They have produced a deductive system baseat amtthe
Z Standard (v1.0) using Isabelle’s simple logical thebkyg as a basis (sincekzis a
sequent calculus in the same style as that)f The object language (2) is represen-
ted in Isabelle using simply typed lambda calculus. This provides aitmirsupport
for product and power types (though not bindings) so all deductianaatomatically
type-correct. Quantifiers and other binding constructs (such as set comgit)eare
expressed using lambda-abstraction. The predi¢ate X e P is represented as
V(Az e z € X A P). Using this style, Isabelle hides much of the detail involved
in proof; usual side conditions about variable capture are automatresibected (in-
deed, rules are not permitted to have side-conditions), and alpha-comnversiuto-
matic where necessary.

The paper cited explains how this approach necessitates the expansion odschem
references at the outset; this is done in a preprocessing step. As wedwyet®
do this entails strong assumptions about the name spaces used in tHeap@ti
Clearly, it also results in very long formulae, and thus has a high impaeffaiency.
The former problem is mitigated by Isabelle’s pretty printer—the corcsghtax for
the expanded schema is retained as simply its name. Preprocessing is also used t
eliminate a potential problem arising from the use of schemas as botltgeziand
expressions. Approximately, variables arising in schemas as predicatédd bbedree;
those in schema expressions should be bound. Bound variables agpnopriate be-
causeén Z the names mattetambda-bound variables are anonymous, making schema
calculus operations impossible. The Z-in-Isabelle solution is ttaoemall occurrences
of schemas as expressiafisvith { S e 6.5 }, before replacing these instancesSaby
their definitions.

By making these simplifications, Z-in-Isabelle is able to providesaful proof
environment for a large class of reasoning problems in Z.

11

3.1.4 Zin Isabelle/HOL

An indication of the great generality of Isabelle is that a second encodidgrofsa-
belle has been produced by Kolyang, Santen, and Wolff (1996), and thigtheasl
common with Z-in-Isabelle. This encoding is built using Isabelle’sLH®eory. Its
chief contribution is to provide an encoding which still allows scherndstmodelled
as logical entities (in fact, as predicates). It is claimed that this is donemarmer
which ‘essentially conforms with latest draft of the Z standard’. The dimgpis nev-
ertheless described as ‘shallow’ because not all aspects of Z semantics are redresent
in logical terms—Z’s distinctive treatment abmess not represented in the logic; the
parser keeps track of these, and schema component variables are essentially anonym-
ous (i.e. schema equivalence is preserved only up to alpha-conversion).

Schemas are denoted by characteristic functions. A schema is represented as a
predicate over a tuple of variables. A schema and its representation are lsblmwin

)
z: N
.7 consts S:: "int <=>int * int * int => bool".
y: def S==SBf.SBx.SBO y.[x: N&Yy:Z &
fiZ— 7 f:Z>-57 | Px f y]
Pzfy

The termSB is defined so that it behaves like a quantifier, and is suppressed by
the pretty-printer; that is, a schema is denoted by a lambda-abstradtienparser
keeps track of schema signatures internally, so that the reference to s¢hamea
context may be replaced by an applicati®n:;, wherez represents those variables of
the surrounding context which are to be identified with those declaréd Observe
that at this level (hidden from the user) the identifiers in the schengrstre are
sorted lexicographically, to facilitate matching.

This representation permits user reasoning about schemas—staying afethaf le
the schema calculus, say—without expanding the schema definitionsisiway,
Kolyang et al. achieve similar results to those presented in the lodiedbtandard.
Again, large schemas present performance problems.

3.1.5 Jigsaw vl

Jigsay v1 (Martin, 1993) uses the 20BJ logical framework to implement afpioxd
based oV (Woodcock and Brien, 1992). In so fardgis soundt? this is a successful
attempt to provide a proof tool faithful to the Z standard. Howeteg, overheads
involved in supporting the context-sensitive notions of freealdes and substitution
using 20BJ (which was itself a very experimental tool) rendered thetiegdystem
cripplingly inefficient.

3.1.6 Cogito

Cogito (Nickson et al., 1996) offers an integrated methodology arlesetdor Z-style
developments from specification through to executable code (in Ada, amnyeA
variant of Z, calledSumis used as the specification notation, and the accompanying
proof tool is calledErgo.

11yy turns out to place heavy restrictions on the naming of véekand so is not very practical.

12

Ergo is a generic theorem-prover, but Cogito is its biggest user, asthius influ-
enced the design of both the core tool and its libraries. Sum is modedled Ergo’s
Zermelo-Fraenkel theory of sets. The modelling follows the semantitiseo$tand-
ard, as mentioned in Section 2.2.2. Therefore, when a Sum specificationssteah
into Ergo, the environment in which each predicate is to be evaluated is exptle
cit. Schemas are characteristic functions, returnimgé’ if the environment contains
a situation of the schema, anfhise’ otherwise. The resulting predicates look rather
forbidding, but advanced tactics simplify them into more recognisatvtas.

This approach has elements in common with the approach of Z in Isabelle/HOL
(Section 3.1.4) in the use of characteristic functions to model schemtbghle the
names are used within the logical theory to match schema components to ridaet cur
environment, whereas in Isabelle/HOL this work is accomplished entir¢heiparser.

The result is a potentially faithful model of the context-sensisighema semantics
presented above, though in a rather impenetrable form. Bindings areiporsed,
and so schemas as types are not allowed, though it would be a straigirddask to
add this facility within the existing model.

3.1.7 Z/HOL

A paper by Bowen and Gordon (1994), (1995) describes a simple * “shadiemantic
embedding’ of Z in the HOL system. This approach makes no special concegsions
Z's unusual use of names, though it offers limited support for inigsl as tuples of
name-value pairs. The paper serves as a good description of the issuesdimg
semantic embeddings (in HOL, in particular).

The paper offers the following shibboleth as a means of distinguisstiallow and
deep embeddings: only in the latter will the property of commutativitychema con-
junction be provable. In a shallow embedding the schema conjunctibpexibnverted
into something else (logical conjunction, typically), rendering thesiion meaning-
less.

3.1.8 ProofPower

In contrast, ProofPower is quite a deep embedding of Z in HOL, compleleaxiens-
ive support for reasoning about Z specifications. Early papers on Proeffogiude
those by Arthan (1991) and Jones (1992); recent information is todmedfon a web
site (Arthan, 1997). In ProofPower Z, bindings are accurately modelleagisal ob-
jects, and the type system is extended to support this use.

Bowen and Gordon (1994) remark, however that this encoding is silifficient
to be able to prove the commutativity of schema conjunction. Thigrgely because
there is no way to write a postulate about ‘all schemas’; the model&sgshifficient
depth. They further remark that there is no single semantic functioneteiin the logic
that maps Z syntax into its meaning.

ProofPower is committed to compliance with the emerging Z standard, tthibug
does not appear that a formal result about the faithfulness of its |dtlic@spect to the
Standard’s semantics is expected. Of all the tools described in this papefPBwer
is probably the most mature.

13

3.1.9 PVSandZ

As part of the ProCos project, Engel and Skakkebeek (1994) describe tieaépp of
the PVS system to Z specifications (particularly those in a timed variaz fufr use
with the duration calculus). We might call this a ‘super-shallow’ entdegl, since it
actually entails a translation from Z into the specification language of RY$roofs
are carried out in PVS, with no special reference to the Z specifications frooing
terms originate.

In this case, the mapping from Z schemas to PVS theories is described as being
quite straightforward; there is a close, though not perfect match betledwd. The
language of Z expressions is a greater challenge, however, as PVS is baséaorya t
of total functions, in contrast to Z’s set theory and partial functichgaithful model
of Z functions in PVS is presented, but as a consequence, the resulting PNSaier
rather complicated, and cannot utilise much of the power of the automaterdpd
in PVS for specifications written in its own native style. PVS and Z remaittheatical
in their approaches.

Also relevant, since it deals with B’s abstract machine notation, whicioisely
related to Z, is work by Pratten (1995) on using PVS in place of the B tool.

3.1.10 Zin LEGO/Type Theory

Maharaj (1994) describes a careful study of how to encode the schema caldafys us
the unifying theory of dependent types (UTT), as implemented in the@p@of-
checker. Various possible representations are explored, taking accoumefdaf the
issues raised in Section 2.2.2. The use of schemas to define typesditigiciuded,
and since UTT employs an intuitionistic logic (whereas Z is generallgriao be
classical), the encoding necessarily covers only a restricted part of Z. Badidr
(1990) describes ‘implementing’ Z using LEGO.

3.2 Special Implementations

Clearly, the alternative to using a logical framework or general-pweposof tool is
to construct one from scratch. In doing so, one can avoid all interfaddems, by
arranging for tool interfaces to permit real Z specifications to be read,enritnd
manipulated. Moreover, in this way it is possible to side-step problehsoundness
by implementing precisely a published account of a logic for Z, such asriken
the Z standard? The implementation is able to provide full support for bindingd an
schemas as first-class objects, and to evaluate accurately Z’s context-senditins
of bound and free variables.

The chief drawback of this approach is the inherently small base of thetartiss,
and user experience on which to draw. A longer implementation time istalbe
expected, of course, and potentially poorer performance of the finishddgrghough
Jigsanl, implemented with 20BJ, was between two and three orders of magnitude
slowerthandigsa/V2, implemented directly in Haskell).

12As no proof of the soundness of that system is offered, thetipreof whether or not this is wise is moot.
Moreover, as soon as the implementor chooses to changetntize published account, a new problem of
soundness arises.

14

3.2.1 JigsaWv2

A second version ofigsaV has been constructed, implemented directly in Haskell.
Some of its features are described in (Brien and Martin, 1995), as it has beeloped
with the specific aim of supportingreciselythe logic described in the Z Standard.
Because the Z Standard has yet to stabilise, the tool is not yet in a genesalile
state.

3.2.2 Zola (Balzac)

Zola (a commercial version of the tool developedBadzac(Harwood, 1991; Ashoo,
1992)) is based on a custom-designed logic, closely relatgd.to

The tool represents a considerable number of man-years of effort, andeatis
ively mature. It has been developed in close co-operation with the Staratztizisy,
and may be expected to conform with the Z Standard.

3.2.3 CADiZ

The CADIZ tool development has gone through a number of stages. Early versions
supported type-checking and typesetting of Z specifications (Jordan, MaQeaxnd
Toyn, 1991; Toyn and McDermid, 1995). More recently, C&Dias begun to support
proof (Toyn, 1996). The tool has a highly visual user interface, abdsed onV. An

ad hocimplementation of substitution is used, but conformance (or convegjevith

the Standard is claimed. A tactic language similar to that usdiyse)V is available

for writing proof procedures.

4 Concluding Remarks

This paper has surveyed some of the features of Z which make the provisproof
tool support an interesting task. It has also considered the approachushalie been
taken to date in meeting that challenge.

The key feature of Z which complicates tool support is its use of nameisthen
consequential complexity of the semantics of Z schemas. This has a widetilg
cause it means that substitution in Z is not readily implemented usmgeghlace-
ment/rewriting tools which come with most proof frameworks.

4.1 The state of the art

If a generic theorem-proving tool is used, we have seen that a differdéhesioc con-

cepts may render the resulting system somewhat distant from Z. In soe®tbésis

quite marked—PVS, for example, uses entirely the wrong paradigm—anitis less
immediately obvious, but lacking bindings as first-class objects, otegbsensitive
free variable calculations, is a significant problem. By making shallowesltings,

such problems can be avoided for large classes of specifications, and a oskfol-

structed. However, the translation to a host logic is necessarily aloatga step, re-
quiring much of the apparatus of a Z logic itself. Having made thestadion, the user
must reason in something akin to a model theory for Z, which has attendasiems.

The success of Z as a specification notation can be attributed largely toubeistrg

made possible by schemas. If this structuring is lost or obscurdeeiprpof activity,

proof will quickly become difficult and/or error-prone.

15

Specially-constructed tools are starting from ‘further back’ and sélleha lot of
catching-up to do. They have the potential to support Z substituschemas and
bindings at a high level, but much of the benefit of doing so is yet tebksed.

In both cases, soundness with respect to the Standard semantics of Z hasmot b
formally addressed. In this regard, the specially-constructed todsilglg have an
advantage, since they incorporate a single logical system which is aménalpeoof
of soundness. In all but the deepest embeddings, by contrast, some slehtre
proof of soundness will rely on the work of the translator, and somé¢he way that
terms are embedded in the host logic.

This form of soundness is often termed ‘faithfulness’. There maythe doubt
that the host logic is itself sound, but that is not a guarantee tleatraimsformation
of Z terms into that system produces a sound (faithful) means of reasabiout Z
specifications.

For the time being, there is a spectrum of options, some of whighire&igher
confidence in their probable soundness, some of which are obvioyghpding Z (as
distinct from something which appears similar to Z, but in fact has glifferent se-
mantics), and some of which are actually useful for doing industriglgvant proofs.

4.2 Future Directions

One way to mitigate questions about soundness, whilst retaining aecesssting
proof tools, might be to develop a framework in which a well-estiigd proof tool is
used to discover proofs, and a small, highly-trusted custom-tnaitifechecker is used
to validate them.

Inany case, itis highly desirable to achieve libraries of theories, lemntkmatics
for the Z world. There is every reason to suppose that such libraridd beumade
portable across various proof tools, since most work from a commdection of
definitions in the Z mathematical toolkit. Spivey’s account of the mati&al toolkit
includes a large number of laws relating the constructs defined there. raylibf
such lawgogether with tactics describing their proafhould be portable enough to be
incorporated into any proof tool supporting Z.

Reasoning about schemas is, as we have seen, more problematic than proving
toolkit properties. Since most Z specifications will not use the regetic properties
of schemas, however, even the systems which take the greatest libertieschdima
semantics will often deliver correct results. Therefore, we might go éuréimd con-
sider proof strategies appropriate to common Z activities (standardeimsoabout
specifications, etc.) which could again be used in both interactive toolsrasted
proof-checkers.

In conclusion, whilst no single proof tool technology is a clear weinat present,
given that we have general agreement on the semantics of Z and the defirdtlmas t
used in the mathematical toolkit, there is every reason to suppose thetioudd be
able to extend the Z mathematical toolkit into a proof toolkit. If we aghieve this,
the implementation technology may eventually become irrelevant.

References

Abrial, J.-R. (1996).The B-Book: Assigning Programs to MeaninGambridge Uni-
versity Press.

16

Arthan, R. D. (1991). Formal specification of a proof towl,S. Prehn and W. J.
Toetenel (eds)yDM’91: Formal Software Development Method®l. 551 of
Lecture Notes in Computer Scien&pringer-Verlag, pp. 356-370.

Arthan, R. D. (1997). The ProofPower web pages.
URL: http://www.trireme.demon.co.uk/

Ashoo, K. (1992). The Genesis Z tool — an overviBLS-FACS FACTSeries I,
3(1): 11-13.

Barnes, J. (1997High Integrity Ada: The SPARK Approachddison-Wesley.

Bloesch, A., Kazmierczak, E., Kearney, P., and Traynor, O. (1994). Th&éddogth-
odology and systemiysia—Pacific Software Engineering Conference {94 345—
355.

Bowen, J. P. and Gordon, M. J. C. (1994). Z and H@LBowen and Hall (1994),
pp. 141-167.
URL: http://www.comlab.ox.ac.uk/archive/z/zum94.html

Bowen, J. P. and Gordon, M. J. C. (1995). A shallow embedding of Zdh Hnform-
ation and Software Technolo@y(5-6): 269-276.

Bowen, J. P. and Hall, J. A. (eds) (1994 User Workshop, Cambridge 199A/ork-
shops in Computing, Springer-Verlag.
URL: http://www.comlab.ox.ac.uk/archive/z/zum94.html

Bowen, J. P., Hinchey, M. G., and Till, D. (eds) (199ZJM’97: The Z Formal Spe-
cification Notation, 10th International Conference of Z Users, RegdiK, April
1997, Proceedingsvol. 1212 ofLecture Notes in Computer Scien&pringer-
Verlag, Berlin Heidelberg.

Brien, S. M. (1994). The development of i3, D. J. Andrews, J. F. Groote, and C. A.
Middelburg (eds) Semantics of Specification Languages (SpBIorkshops in
Computing, Springer-Verlag, pp. 1-14.

Brien, S. M. (1995)A Model and Logic for Generically Typed Set Theory, @Phil.
thesis, University of Oxford. New version expected 1997.

Brien, S. M. and Martin, A. P. (1995). A tutorial on proof in StandatdTech-
nical Monograph PRG-120Programming Research Group, Oxford University
Computing Laboratory, Wolfson Building, Parks Road, Oxford,X38QD, UK.
Presented at ZUM’95.

Engel, M. and Skakkebaek, J. U. (1994). Applying PVS tdPHCoS Il Technical
Report IT/DTU ME 3/1Department of Computer Science, Technical University
of Denmark.

URL: ftp://ftp.id.dth.dk/pub/ProCoS/Marcin.Engel/IDDTH-ME-3%.Z

Harwood, W. T. (1991). Proof rules for Balzakechnical Report WTH/P7/0QImper-
ial Software Technology, Cambridge, UK.

Hodges, W. (1995). The meaning of specifications |: Domains and inittalats,
Theoretical Computer Sciend®2 67-89.

17

Jones, R. B. (1992). ICL ProofPow&CS-FACS FACTSeries lll, 1(1): 10-13.

Jordan, D., McDermid, J. A., and Toyn, I. (1991). CADiZ — computeedidesign in
Z,in Nicholls (1991), pp. 93-104.
URL: http://www.dcs.gla.ac.uk/springer-verlag/50.html

Kolyang, Santen, T., and Wolff, B. (1996). A structure preserving dimgpof Z in Isa-
belle/HOL,1996 International Conference on Theorem Proving in Higher Order
Logic, Springer-Verlag.

Kraan, I. and Baumann, P. (1995). Implementing Z in Isabéilel. P. Bowen and
M. G. Hinchey (eds)ZUM'95: The Z Formal Specification Notatipwol. 967 of
LNCS Springer-Verlag, pp. 355-373.

Lupton, P. J. L. (1991). Z and undefinedndss;hnical Report PRG/91/62 Standards
Panel / Programming Research Group.

Maharaj, S. (1990).Implementing Z in LEGOMsc thesis, The University of Edin-
burgh.

Maharaj, S. (1994). Encoding Z-style schemas in type thaory. Geuves (ed.),
TYPES '93: Types for Proofs and Progranwsl. 806 ofLecture Notes in Com-
puter ScienceSpringer-Verlag.

URL: http://www.cs.stir.ac.uk/”sma/publications/Schemasinp§T.

Martin, A. (1993). Encoding W: A logic for Z in 20BJn J. C. P. Woodcock and
P. G. Larsen (edsfME’'93: Industrial-Strength Formal Method&/l. 670 of
Lecture Notes in Computer Sciend®mrmal Methods Europe, Springer-Verlag,
pp. 462—481.

Neilson, D. S. and Prasad, D. (1992). zedB: A proof tool for Z built gmBNicholls
(1992), pp. 243-258.
URL: http://www.dcs.gla.ac.uk/springer-verlag/21.html

Nicholls, J. E. (ed.) (1991) User Workshop, Oxford 199®/orkshops in Computing,
Springer-Verlag.
URL: http://www.dcs.gla.ac.uk/springer-verlag/50.html

Nicholls, J. E. (ed.) (1992)Z User Workshop, York 199Workshops in Computing,
Springer-Verlag.
URL: http://www.dcs.gla.ac.uk/springer-verlag/21.html

Nicholls, J. (ed.) (1995) Notation Z Standards Panel, ISO Panel JTC1/SC22/WG19
(Rapporteur Group for Z). Version 1.2, ISO Committee Draft; CDG35
URL: ftp://ftp.comlab.ox.ac.uk/pub/Zforum/ZSTAN/drafts

Nickson, R., Traynor, O., and Utting, M. (1996). Cogito Ergo SuPnoviding struc-
tured theorem prover support for specification formalisim&. Ramamohanarao
(ed.), Proceedings of the Nineteenth Australasian Computer Science Confer-
ence (ACSC'96)Vol. 18(1) of Australian Computer Science Communications
pp. 149-158.

Parker, C. E. (1991). Z tools catalogu#lP project report ZIP/BAe/90/02@British
Aerospace, Software Technology Department, Warton PR4 1AX, UK.

18

Pratten, C. H. (1995). Anintroduction to proving AMN specificatiorith?VS and the
AMN-PROOF tool,in H. Habrias (ed.)Z Twenty Years on — What is its Future?
IRIN (Institut de Recherche en Informatique de Nantes), Univerat&lantes,
France, pp. 149-165.

Saaltink, M. (1992). Z and Eves Nicholls (1992), pp. 223-242.
URL: http://www.ora.on.ca/biblio.html#mark:z-and-eves
URL: http://www.ora.on.ca/biblio.html#mark:z-eves

Saaltink, M. (1997). The Z/EVES systein,Bowen et al. (1997), pp. 72-85.

Spivey, J. M. (1988)Understanding Z: A Specification Language and its Formal Se-
mantics Vol. 3 of Cambridge Tracts in Theoretical Computer Scigr@@mbridge
University Press.

Spivey, J. M. (1992)The Z Notation: A Reference Manuaécond edn, Prentice-Hall.

Spivey, J. M. and Sufrin, B. A. (1990). Type inference iniZD. Bjgrner, C. A. R.
Hoare, and H. Langmaack (ed&PM'90: VDM and Z—Formal Methods in
Software Developmentol. 428 ofLecture Notes in Computer Scien&pringer-
Verlag, pp. 426-451.

Spivey, M. (1996). Richer types for Eprmal Aspects of Computirgf5): 565-584.

Steggles, P. and Hulance, J. (1994). Z tools survey. Imperial Seftheahnology Ltd.
/ Formal Systems (Europe) Ltd.
URL: ftp://ftp.ist.co.uk/pub/doc/zola/ztool-survey.ps

Stepney, S., Barden, R., and Cooper, D. (eds) (199Bject Orientation in ZWork-
shops in Computing, Springer-Verlag.
URL: http://www.dcs.gla.ac.uk/springer-verlag/30.html

Toyn, I. (1996). Formal reasoning in the Z notation using CAREc. 2nd Workshop
on User Interfaces to Theorem Provers, York
URL: ftp://ftp.cs.york.ac.uk/hiseeports/cadiz/uitp.ps.Z

Toyn, I. and McDermid, J. A. (1995). CADiZ: An architecture for Z teand its
implementationSoftware—Practice and Experien2&(3): 305-330.

Woodcock, J. C. P. and Brien, S. M. (1992)V: A Logic for Z, Proceedings 6th Z
User Meeting Springer-Verlag.

Woodcock, J. C. P. and Davies, J. (199&)sing Z: Specification, Refinement, and
Proof, Prentice-Hall, Europe.

Acknowledgements

The perspectives described here have arisen out of many conversationsligilywes

over many years. Stephen Brien and Jim Woodcock have been the most influential
in helping my understanding. Other members of the Z Standards commiitethe
SVRC have contributed insight, too. Special thanks to lan Toyn, IreaiK Mark
Saaltink, and Thomas Santen for discussions about their respective@otsfand to

Peter Kearney for comments on an earlier draft of this report.

19

https://www.researchgate.net/publication/2644718

