
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2644718

Approaches to proof in Z - or - Why effective proof tool support for Z is hard

Article · February 1970

Source: CiteSeer

CITATIONS

2
READS

8

1 author:

Some of the authors of this publication are also working on these related projects:

Trusted Cloud Computing View project

Cyber Supply Chain Risks in Cloud Computing View project

Andrew Martin

University of Oxford

134 PUBLICATIONS 1,995 CITATIONS

SEE PROFILE

All content following this page was uploaded by Andrew Martin on 18 November 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2644718_Approaches_to_proof_in_Z_-_or_-_Why_effective_proof_tool_support_for_Z_is_hard?enrichId=rgreq-af61632fc2a0d40f14f729602d177a42-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ3MTg7QVM6Mjk3MDA5NzczODU4ODE5QDE0NDc4MjQwNTYyODM%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2644718_Approaches_to_proof_in_Z_-_or_-_Why_effective_proof_tool_support_for_Z_is_hard?enrichId=rgreq-af61632fc2a0d40f14f729602d177a42-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ3MTg7QVM6Mjk3MDA5NzczODU4ODE5QDE0NDc4MjQwNTYyODM%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Trusted-Cloud-Computing?enrichId=rgreq-af61632fc2a0d40f14f729602d177a42-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ3MTg7QVM6Mjk3MDA5NzczODU4ODE5QDE0NDc4MjQwNTYyODM%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Cyber-Supply-Chain-Risks-in-Cloud-Computing?enrichId=rgreq-af61632fc2a0d40f14f729602d177a42-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ3MTg7QVM6Mjk3MDA5NzczODU4ODE5QDE0NDc4MjQwNTYyODM%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-af61632fc2a0d40f14f729602d177a42-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ3MTg7QVM6Mjk3MDA5NzczODU4ODE5QDE0NDc4MjQwNTYyODM%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew_Martin37?enrichId=rgreq-af61632fc2a0d40f14f729602d177a42-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ3MTg7QVM6Mjk3MDA5NzczODU4ODE5QDE0NDc4MjQwNTYyODM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew_Martin37?enrichId=rgreq-af61632fc2a0d40f14f729602d177a42-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ3MTg7QVM6Mjk3MDA5NzczODU4ODE5QDE0NDc4MjQwNTYyODM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Oxford?enrichId=rgreq-af61632fc2a0d40f14f729602d177a42-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ3MTg7QVM6Mjk3MDA5NzczODU4ODE5QDE0NDc4MjQwNTYyODM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew_Martin37?enrichId=rgreq-af61632fc2a0d40f14f729602d177a42-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ3MTg7QVM6Mjk3MDA5NzczODU4ODE5QDE0NDc4MjQwNTYyODM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew_Martin37?enrichId=rgreq-af61632fc2a0d40f14f729602d177a42-XXX&enrichSource=Y292ZXJQYWdlOzI2NDQ3MTg7QVM6Mjk3MDA5NzczODU4ODE5QDE0NDc4MjQwNTYyODM%3D&el=1_x_10&_esc=publicationCoverPdf

SOFTWARE VERIFICATION RESEARCH CENTRE

SCHOOL OF INFORMATION TECHNOLOGY

THE UNIVERSITY OF QUEENSLAND

Queensland 4072
Australia

TECHNICAL REPORT

No. 97-34

Approaches to proof in Z
– or –

Why effective proof tool support for Z is
hard

Andrew Martin

November 1997

Phone: +61 7 3365 1003
Fax: +61 7 3365 1533

http://svrc.it.uq.edu.au

Note: Most SVRC technical reports are available via an-
onymous ftp, fromsvrc.it.uq.edu.au in the directory
/pub/techreports. Abstracts and compressed postscript
files are available viahttp://svrc.it.uq.edu.au

Approaches to proof in Z
– or –

Why effective proof tool support for Z is hard

Andrew Martin�
Abstract

Various attempts at supporting proof in Z are described in the literature. This
paper presents a survey of these approaches, and the underlying semantic issues
which make proof in Z a non-trivial task. The draft Z Standardis used as a normat-
ive reference. Special care is given to an account of the peculiarities of Z schemas.
The proof tools surveyed divide into two groups: custom-made implementations
for supporting Z, and encodings of a Z logic within some otherlogical framework.
The latter are further subdivided into ‘deep’ and ‘shallow’embeddings. The broad
conclusion is that none of these approaches is a clear winnerat present, but that
each may be able to benefit from the others.

Keywords

formal proof, semantics, proof tools, Z notation, schemas

1 Introduction

In the software engineering world, Z (Nicholls, 1995) has gained somesignificant re-
spect as a notation for specification (see for example, (Bowen et al., 1997)),but very
few projects undertake reasoning about their specifications—either to validate them,
or to refine them formally towards code. The reason usually cited for choosing not to
conduct such reasoning is one of diminishing returns: formal specifications are widely
believed to improve the quality of delivered systems without significant increase in
cost; formal validation and refinement appears to be very expensive, with relatively
few benefits to be gained.

No doubt, a major reason why there is little use of Z in this way is because there are
few strong tools for proof in Z. (Specification, by contrast, is well-supported by some
excellent type-checking tools.) Conversely, few have been willing to invest in the pro-
duction of such tools because there appears to be little market for them. Other formal
methodologies have been more successfully applied with extensive toolsupport.1 Why
have proof tools for Z been slow in appearing?

It is worth noting in passing that type-checking in Z has been very successful as a
simple semantic check of well-formedness for specifications. This is largely because
Z has a simple decidable Hindley-Milner type system (Spivey and Sufrin, 1990) which�SVRC, School of Information Technology, The University of Queensland, Brisbane 4072, Queensland,
Australia.apm@it.uq.edu.au

1B (Abrial, 1996), for example, has developed alongside toolsfor its application.

1

can be statically checked. Moreover, a tool likefUZZ is able to use Z’s abbreviation
mechanisms to construct a system of subtypes, for helpful error diagnostics (Spivey,
1996). Z’s approach with a decidable type system may be contrasted with that of PVS
(see Sections 2.2.1 and 3.1.9).

To the casual observer, the Z notation is merely a style for writing terms of first-
order predicate calculus and set theory. This is of course true in principle. Z is a first-
order language, and a Z specification can be mechanically transformed into a collection
of classical predicates. Classical logic and set theory are well-understood topics, and
thus producing proof tools for Z does not sound like an interestingtheoretical research
problem.

We appear to be faced here with a paradox. Z is constructed using an easy theory,
yet it is too expensive to produce useful tools for it. Many research projects have
considered aspects of proof tool support for Z, and a few product-quality tools have
been produced. Whilst hard figures are not available, anecdotal evidence suggests that
uptake of these tools is small.

1.1 Semantics for Z

That Z is not quite the easy theory it first appears to be is evidenced by thenumber
of different accounts of the semantics of Z which are available. The seminal work on
Z semantics comes from Spivey (1988). This has been adapted considerably to give
the semantics now presented in the Z Standard. The standard itself may be regarded
as presenting two views of the semantics: the definitional (normative) part of the doc-
ument gives a denotational model for Z using the relational calculus; an informative
annex offers a logical theory which includes a deductive system for reasoning about Z
specifications; it might be regarded as an axiomatic semantics in its own right. This
second account is intended to be consistent with the first, though not equivalent (since
it takes decisions over matters which the denotational description deliberately leaves
loose—the issue of undefinedness, for example). A formal proof of soundness (modulo
these issues) is envisaged, though not published at present.

Each proof tool described in this paper also effectively defines its own semantics
for Z. For many, the correspondence with the standard is very close, though a proof
of soundness or faithfulness is not usually offered. For others, theresemblance with
Standard Z will merely be a passing likeness. Many texts also provide elements of a
semantics for Z, offering either a (paper-based) proof system, or some form of model
theory. Again, some of these are close to the Standard, (Woodcock and Davies, 1996),
others approach from a very different angle, e.g. (Hodges, 1995).

1.2 Outline of the paper

The next section will explain the main challenges encountered in supporting proof in
Z. Above all, the Zschema notation(which is the mechanism by which complexity
is managed in Z specifications) appears to be the most problematic. Z schemas are
unlike the usual terms of logic and set theory, and providing deep support for them is
non-trivial.

A schema consists of adeclarationof some typed variables and a (collection of)
predicate(s) over those variables (and other variables of the specification). It corres-
ponds to a generalisation of a record type in programming, but in popular Z style may
also for example describe the global variables of a system, operations onthose vari-
ables, or the promotion of one such (sub-)system into another.

2

Transformation into pure first-order predicate logic is possible (see the accounts
of various systems which do this, below), but almost entirely obfusticates the original
specification, and doing so soundly is again non-trivial. This semanticgap can be seen
in something as seemingly trivial as howsubstitutionworks.

The second part of the paper surveys and attempts to classify the leading approaches
to these problems. These may be classified into two major groups—thosewhich sup-
port Z by encoding its semantics within an existing system (a logical framework, or
generic theorem-prover); and those which have been implemented from scratch, espe-
cially for the task of supporting Z. In both groups we find a variety of experimental
projects, as well as product-quality tools.

One of the original goals of the Z standardisation activity was to promote a widely-
accepted means of reasoning about Z specifications. In a final section, we consider
whether the emerging Z standard may assist in solving some of the problems outlined
here.

Spivey and the Standard Some of the problems which will be described here are a
result of the liberal approach taken by the Z Standard. The Z of Spivey’s Reference
Manual (1992) is more restrictive (in the use of arbitrary schemas as expressions, for
example) and thereby avoids some (though not all) of these issues.

To some extent, the restrictions imposed by the Z Reference Manual correspond
to good stylistic advice for aiding readability and simplifying proof. For a variety of
reasons, the Standards committee has chosen to take a more liberal approach, and at
length a reasonable semantics for it has been defined. It will be for the usersto decide
if the greater freedom of expression is worthwhile.

2 Challenges in supporting proof in Z

This section explains some of the reasons why supporting Z is not trivial. The first
subsection deals with direct usability issues; the second with more profound semantic
matters.

2.1 Problems of Syntax and Methodology

Much of Z is a stylised way of writing traditional mathematics. The notation is terse
because mathematicians have generally aimed for conciseness of notation in orderto
ease both the discovery of proofs and their recording. To reproduce the notation ac-
curately requires a moderately advanced typesetting/word-processing system. Other
specification notations are deliberately text-based (e.g. the annotations in SPARK Ada
(Barnes, 1997)). Many systems use a special syntax for specification, and another for
proof. This complicates their use, and increases the potential for mistakes.

The concrete syntax of the specification/proof is of no theoretical interest. How-
ever, in the software engineering context it is quite significant, fortwo reasons:

1. Changes of notation are a barrier to understanding. Whilst most people are able
to cope reasonably well with different syntaxes for input, printed/typeset spe-
cifications, and tool interactions, the cost of learning all three is high,and the
scope for mistakes very great. For example, two closely-related tools are used
regularly by the author; each uses a different binding priority for certain infix
operators. The result is that many hours have been wasted because terms which
look the same in both systems actually have radically different meanings.

3

2. Z specifications are commonly used in high-integrity developments.Here, it is
most important that procedures for configuration management and version con-
trol are followed. Changes are inevitable during a project; either due to changing
requirements, or the discovery of errors. The propagation of changes through
specification documents, validations, refinements, and code must be recorded
and traceable.

If a collection of tools is used which do not share common input formats, the
development process will be hard to manage. Automated translation from one
form to another is usually possible, but the retention of comments/line numbers
etc. may be veryad hoc. Moreover, the status of proofs needs to be part of
the managed configuration, so that the extent of changes in requirements and
specifications can be accurately determined.

These problems are not unique to Z, but do distinguish the proof activity in soft-
ware engineering from the more general concerns of the proof tool community.
(Because proofs in group theory, say, are unlikely to be subject to changing as-
sumptions.) They are the subject of ongoing research.

These concerns seem to mitigate against use of off-the-shelf proof tools.
Notice how well a tool likefUZZ fares against these criteria. It can be inserted in

the process with virtually no overhead (provided the specifiers use LATEX) and it can be
run as a batch job in order to achieve ‘regression testing’ for specification and design
documents.

An alternative approach is to use a text-based version of Z for specificationand
interaction with tools. The Standard offers anemail lexisfor such purposes, but this is
yet to be widely taken up. The Cogito project (Bloesch et al., 1994) defines its own
Z subset2 (calledSum) which is written using simpleASCII characters. Unfortunately,
interaction with Cogito’s theorem proverErgouses a different (though closely-related)
syntax.

A common method for managing complexity in development is to use a module
system. Various module schemes have been proposed for Z,3, but none has achieved
widespread use. The Z Standard has a notion ofsection, which provides the simplest
possible form of modularity but offers no formal support for theseparate development
of modules—in particular, there is no separation of name-spaces.

Cogito has an extensive module system (Nickson, Traynor, and Utting, 1996), with
the module structure of the specification reflected in a theory structure in the proof tool.
Nevertheless, this modularity does not support hiding, and so is not able to guarantee
safe data refinement without restrictions on module usage.

2.2 Technical (Semantic) Problems

As we have observed, there are a number of different accounts of the semantics of Z.
The issues raised here are discussed relative to the Z Standard’s account, which in most
cases coincides with Spivey’s (1988). Of course, the problems encounteredwill depend
to some extent on the underlying framework (logical or computational) in which the
semantics are to be expressed. The genericity of most of the operators in the Z toolkit,
for example, is problematic in some systems.

2Sum is not strictly a subset of Z: it also extends the languagewith annotations to support validation, and
an extensive module system.

3One way to viewobject orientationis as a style for modularity. Various object-oriented Z notations have
been proposed, most are surveyed in (Stepney, Barden, and Cooper, 1992).

4

The issues highlighted here are problems common to most systems for reasoning
about Z specifications.

2.2.1 Partial Functions

Common Z style makes heavy use of partial functions — as does the Z mathematical
toolkit. It is therefore important that the user of Z should ensure that whenever a
function is applied, it is defined at its point of application.4 Z/EVES has made such a
check largely automatic—thus permitting it to be part of a test of well-formedness, like
type-checking. (Of course, in general, the test is undecidable, but for many practical
specifications, this is not a problem.) Apparently, few real specificationspass this test
(Saaltink, 1997).

Most proof systems for Z incorporate the well-definedness check as part of the rule
for function application. In the logic of the Standard, for example, we have� ` (e; u) 2 f ^ 8 y : f � y :1 = e) y :2 = u [y 62 �e [�u]� ` u = f e
Such frequent checks often serve to complicate proofs, but present no theoretical diffi-
culty. A good theorem-prover is even able to store such results for reuse wherever they
are encountered.

It is worthwhile to contrast here the approach taken in PVS, where every func-
tion must be total. This is achieved using a system of subtypes, so the problem is
transformed into one of type-checking (and so the PVS type system is undecidable;
demonstrating type-correctness typically entails proof).

If Z partial functions are applied outside their domains, the result depends on the
particular flavour of Z semantics being used. A common error is to apply theset car-
dinality function# to a set which is not known to be finite:set : PN#set < 10
The function# is partial: its result is not defined for infinite sets, so the truth value of#set < 10 is not determined. The standard has been careful to avoid giving a value
to such expressions, so that any reasonable interpretation can be used. Thefollowing
principle, succinctly described by Peter Lupton (1991), is strongly encouraged

Undefinedness should not be exploited in specifications.

The logic presented in the standard offers one particular way to deal with this issue.5

All terms denote values (so for any expressiont , we have thatt = t), but in order
to replace a function application with its result, the expression beingapplied must be
shown to be functional at the point of application (as in the rule above). A related
resolution is that embodied by the Z/EVES principledon’t ask.

Observe that Z differs from VDM in this area in that Z’s predicates are classical—
either ‘true ’ or ‘ false ’—whereas VDM uses a carefully-crafted logic of partial func-
tions, with an extra ‘non-value’ logical value.

4More accurately, a sufficient check is that whenever arelation is applied to an argument, it isdefined
andfunctionalat that point.

5Observe that the logic has the status of ‘informative’ in thestandard. This is contrasted with the ‘norm-
ative’ (definitional) parts, wherein function applicationis given a deliberately loose definition.

5

Although based on Z, Cogito follows VDM more closely in this regard. An extra
value is added to the underlying model. The value# (‘bad’) is taken by any improper
term. It is not a member of any type; indeed, it is not even a ZF set. Most operators
are strict with respect to ‘bad’, but in logical terms it forms an equivalenceclass with
‘ false ’.

A detailed study of the possible treatments of undefinedness in specification nota-
tions is outside the scope of this paper. Our aim here is merely to flag itas an issue
which complicates reasoning in Z. The problem is one both of logicandmethodology.
A good survey of approaches can be found in (Brien, 1995).

2.2.2 Z Schemas

Z schemas are certainly the most interesting feature of the notation. Theymight be
viewed simply as macros giving a name to a combination of declarations and predic-
ates over the declared variables.6 However, in most accounts of Z semantics, schemas
have a meaning of their own. In their greatest generality, Z schemas are quiteun-
like any terms normally arising in classical logics. This unusual natureof schemas is
what makes producing a logical system for Z using familiar components into quite a
challenging task.

Roles for Schemas Z has three major syntactic classes: declarations, expressions,
and predicates. In general, these are strictly non-overlapping (there are noboolean-
valued functions, for example, to be used as predicates),but a schema may appear in
any of these roles.

A simple Z schema might be writtenSx : Nx < y
Writing such a declaration in a Z specification is equivalent to defining7S == [x : N j x < y]
The right-hand side of this declaration is a schema in ‘horizontal format’. This is an
instance of a schema used as anexpression. A schema used as an expression denotes a
set ofbindings—see below. Schema expressions may be combined using the operators
of theschema calculus, so if we have schemasT1 andT2, we may define schemaT ,
say, asT == T1 _ T2
This approach is commonly used when schemas describe operations—T1 may denote
the successful operation, andT2 the error case(s).

A schema can also be used as a declaration:
6This was, initially, precisely the meaning, according to some. A paper by Brien (1994) surveys the

historical development of Z.
7Observe that in (Spivey, 1992) schema declarations are introduced usingb=, and ‘abbreviations’ using==. Standard Z uses the second symbol for both purposes.

6

x : Nx < y
This ‘axiomatic declaration’ uses the same schema as before, but now instead of giving
a name to the schema, it is used directly to define a global variablex , and place a
constraint on its value. The same declaration occurs between the quantifier and the�
in the following predicate:8 x : N j x < y � x = 0
Given the declaration above, this predicate may also be written8S � x = 0

Thirdly, a schema can be used as a predicate. Again, using the declaration above,
we may write8 x : X � S
This would be equivalent (in most cases) to writing8 x : X � x 2 N ^ x < y
Free variables, etc. In these various roles and forms, the schema has different prop-
erties. The variables declared in a schema are ‘free’ when the schema is used as a
predicate, and something akin to ‘bound’ when it appears in an expression. The terms
‘bound’ and ‘free’ do not have quite their traditional meanings, however.

The standard uses the notations�(e) and�(p) to denote the free variables of ex-
pressione and predicatep respectively. We have�[x : N j x < y] = fyg
(Strictly, N and(<) are also free variables, but we shall overlook that detail here.)
Whereas,�(S) = fSg. Moreover,�[x : N j x < y] = fx ; yg
but�(S) = fS ; xg.

There are two points to note here. First, the name of the schema is a proper Z
name. It may be subject to quantification, for example (as a simple variable,as in8S : PN � b 2 S , or even as a schema:8S : P[x : N j x < y] � b 2 S), and
so its meaning must be determined by context, and not by a global substitution (like
a macro). Secondly, the use ofy in the definition ofS is fixed as they which was in
scope at the point of declaration. Thus whenS is used as a predicate,y is not a free
variable.

The consequence of this is that a schema reference (i.e. use of a schema name likeS as a declaration, predicate, or expression)cannotin general simply be replaced by
its definition.

The challenge, then, in supporting this notation in a system set up to deal with tradi-
tional notions of bound/free variables is that the free variables of a term are dependent
on context. Logical frameworks which provide facilities for efficient evaluation of free
variables but do not offer access to the context will not be able to support the semantics
of Z in its greatest generality. Approaches to this problem are surveyed inSection 3.1.

7

Bindings An alternative approach to understanding Z schemas is to consider bind-
ings. When a schema is used as an expression, it denotes a set of bindings,mappings
from namesto values. For a schemaT with component variablest1; : : : ; tn , we would
write an element ofT ashj t1 == e1; : : : ; tn == en ji
Thus, ify had the value3 whenS was declared above, we would haveS = �hj x == 0 ji; hj x == 1 ji; hj x == 2 ji	
Bindings are a simple generalisation of tuples (alabelledproduct rather than a cartesian
product), but, again, they are not common in logical frameworks. A distinctive binding
for a schema is that one which maps each name to its corresponding value in the current
context. For schemaT , this is�T .�T = hj t1 == t1; : : : ; tn == tn ji

When a schema appears as an expression, then, it denotes a set of bindings—those
bindings which have the same alphabet (i.e. which declare/use the same set of names)
as the schema and give values to the variables in such a way as to make the predicate
part of the schema equivalent to true. When a schemaT appears as a predicate, it
denotes the predicate�T 2 T
This predicate may be read as saying simply that the binding which maps thevariables
defined inT to their values in the current context is one which satisfies the declaration
and predicate parts ofT .

A schema which appears as a declaration can be viewed as introducing a binding
of that schema type, and using that binding as a local definition.�8S � P�, �8 b : S � (let b � P)�
(subject to side-conditions to prevent variable capture). See below for adiscussion of
local definitions and substitution.

Semantics This view of a schema as a set of bindings is made concrete in the Stand-
ard’s semantics for schemas, where for a schemaS , we have([S])M : Env $ Situation
HereEnv is theenvironment, that is, a mapping of names to values, andSituation is
a mapping from names to type–value pairs (where the value must be a memberof the
type). Thus in any given environment, the schema may denote a number of situations.
Bindings are a simplification of situations in that they map simply from names to values
(omitting the type part).

The denotation of a predicate is the set of environments in which that predicate is
true. A schemaS used as a predicate is true in an environment iff that environment
contains a situation of the schemaS .

8

Substitution Whilst bindings serve to complicate the language considerably, they
are also very useful for describing substitution in Z. This is a majorcontribution of
the paper of Woodcock and Brien (1992). Because the notion of free variablesin Z is
context-dependent, so too must be any formulation of substitution.

Z uses a dot to denote binding selection, sohj x == 3; y == 4 ji:y takes the value4. We may promote this selection operator so thathj x == t ji � e denotes the result of
replacing every free occurrence ofx in expressione by t , andhj x == t ji � p denotes
the result of replacing every free occurrence ofx in predicatep by t .8 More generally,
an arbitrary binding can be used as a substitution. This notation is merely a shorthand
for the local declaration which Spivey writes usinglet. He notes thatlet can be written
using other Z operators, so that for expressions(let x1 == e1; : : : ; xn == en � e)= (� x1 : t1; : : : ; xn : tn j x1 = e1; : : : xn = en � e)
and for predicates(let x1 == e1; : : : ; xn == en � p), (91 x1 : t1; : : : ; xn : tn j x1 = e1; : : : xn = en � p)
(subject to certain side-conditions in each case).

The short forms mentioned above permit the description of inference rules for quan-
tifiers as follows:� ` 8S � P � ` b 2 S [AllE]� ` b � P
This is a generalisation of the traditional form, which would use replacementP [e=x]
in the conclusion of the rule. The rule says that a universal quantification may be spe-
cialised by providing a bindingb which satisfies its declaration part, assigning values
to each of the variables. The specialised version of the predicate is obtained by usingb
as a substitution intoP .

Moreover, this version is context-sensitive in thatb � P is to be evaluated in the
context of the declarations in�.9 Clearly, for proof, a context-sensitive account of how
to simplify these substitution terms is required. This is presentedin the Standard.

3 Possible Approaches to Supporting Proof in Z

A significant number of proof tools aiming to support proof in Z have been described
in the literature. The author would be pleased to hear of any not already mentioned
here.

One way to classify the various proof tools for Z is to distinguishbetween those
which encode/embed Z within an existing system, and those which have been imple-
mented especially for supporting Z. The latter clearly have a better chance of meeting
the concerns of Section 2.1. The dividing line is not always entirely sharp (see, for
example, the description ofErgo in Section 3.1.6 below).

Z tool summaries have been published previously by Parker (1991) and Steggles
and Hulance (1994).

8The symbols differ (� vs�) in order to help disambiguate substitution into a schema expression and a
schema predicate: the results also differ, in general.

9� is a sequence of Z paragraphs—schemas declarations, given sets, predicates, etc. The sequent form� ` P should be read as ‘the specification� is sufficient to derive the predicateP .’

9

3.1 Encodings within a more general system

Many highly configurable proof support tools are available today. Some allow the user
to define a logical theory for a particular problem domain within a well-understood
logic (e.g. the HOL system); others—the ‘logical frameworks’—permit the definition
of the logical system itself from scratch (e.g. Isabelle). This detail need not concern
us.

However, thelevel of the embedding is of interest. Some encodings are at the
syntactic level. A language of Z terms (term algebra) is defined within the host system,
as are inference rules, such as those presented in the Z standard (logical frameworks
are best suited to this task). Alternatively, the embedding may be semantic, providing
a mapping from (something close to) Z into some pre-existing logical theory, such as
higher-order logic. Semantic embeddings may be further subdivided into ‘deep’ and
‘shallow’ embeddings.

The paper of Bowen and Gordon (1994) discusses the issues involved in various
levels of embedding. In general there will be a continuum of possible levels, rather
than a sharp division. Typically, the deeper the embedding, the more abstract the results
which may be proved. (A deep embedding might permit a proof of the commutativity
of schema conjunction, say.) A shallow embedding may be good for proving results
about a particular specification, but nothing more general. The embeddingswhich
I have called ‘syntactic’ are somehow the deepest of all, in that the logical rules of
(something like) Z are encoded, and little reliance is placed on the semantics of the
host logic.10

A good reason for choosing to encode support for Z within a more generalsys-
tem is that these systems tend to be well-designed and efficient. They have sizeable
user communities with much experience of their use, and large libraries of tactics and
example theories available for direct re-use or minor adaptation.

Conversely, if one is concerned to demonstrate the soundness of one’s encoding,
or compliance to the Z Standard, such an encoding may present a major burden. A
system such as HOL will ensure the soundness of proofs which it produces, but this
is useful only if the axiomatisation of Z introduces no inconsistency. Moreover, the
transformation from Z into an alternative semantic framework must be trusted (or the
chosen semantic model shown consistent with that of the Standard). In the area of
schemas, as discussed in Section 2.2.2, this can be particularly problematic.Finally, the
majority of such frameworks will require considerable work if support for Z syntax—
and user interaction using the same notation—is to be arranged.

3.1.1 zedB

zedB (Neilson and Prasad, 1992) was an early attempt to support proof in Z usingthe
B-Tool. Because B’s set theory and logic is essentially identical to Z’s, the manipula-
tion of Z expressions using B is very profitable. B does not support the schema nota-
tion, however, so some tricks were employed to permit the simplification of schema
expressions. The soundness of these was never fully explored.

B has now become much less general-purpose, so this is not a viable future imple-
mentation route.

10The term ‘syntactic embedding’ is the author’s invention. Notice that it is at the opposite end of the
spectrum from a syntactictransformation, which generally accomplishes a shallow embedding.

10

3.1.2 Z/EVES

EVES is a relatively highly automated proof tool (compared to the other proof systems
described here) for predicate calculus and (untyped) set theory. The Z/EVES system
(Saaltink, 1997) translates Z specifications into the core language of EVES, and sup-
ports the production of proofs about those specifications. The results of the application
of proof steps (typically large steps, due to the high degree of automation) are trans-
formed back into the Z notation.

As indicated above, considerable effort has been put into checking (in an automated
manner wherever possible) that partial functions are applied within theirdomains—
with the perhaps surprising result that very many specifications checked using the tool
have failed.

An earlier paper on Z/EVES (Saaltink, 1992) explains some of the difficulties en-
countered in translating expressions involving schemas and bindings into the untyped
base language of EVES, as one would expect from the account above. No full solution
is presented there, but one has since been discovered so Z/EVES now covers virtually
the whole of Z. As with many of the systems described here, Z/EVES displays poor
performance when the number of variables in a schema becomes large (which may
happen surprisingly easily, due to Z’s structuring schemes).

3.1.3 Z-in-Isabelle

Kraan and Baumann (1995) have produced a ‘deep semantic embedding’ of Z the lo-
gical framework Isabelle. They have produced a deductive system based on that in the
Z Standard (v1.0) using Isabelle’s simple logical theoryLkzas a basis (sinceLkz is a
sequent calculus in the same style as that ofW). The object language (Z) is represen-
ted in Isabelle using simply typed lambda calculus. This provides automated support
for product and power types (though not bindings) so all deductions are automatically
type-correct. Quantifiers and other binding constructs (such as set comprehension) are
expressed using lambda-abstraction. The predicate8 x : X � P is represented as8(� x � x 2 X ^ P). Using this style, Isabelle hides much of the detail involved
in proof; usual side conditions about variable capture are automaticallyrespected (in-
deed, rules are not permitted to have side-conditions), and alpha-conversion is auto-
matic where necessary.

The paper cited explains how this approach necessitates the expansion of schema
references at the outset; this is done in a preprocessing step. As we have seen, to
do this entails strong assumptions about the name spaces used in the specification.
Clearly, it also results in very long formulae, and thus has a high impact on efficiency.
The former problem is mitigated by Isabelle’s pretty printer—the concrete syntax for
the expanded schema is retained as simply its name. Preprocessing is also used to
eliminate a potential problem arising from the use of schemas as both predicates and
expressions. Approximately, variables arising in schemas as predicates should be free;
those in schema expressions should be bound. Bound variables are notappropriate be-
causein Z the names matter: lambda-bound variables are anonymous, making schema
calculus operations impossible. The Z-in-Isabelle solution is to replace all occurrences
of schemas as expressionsS with f S � �S g, before replacing these instances ofS by
their definitions.

By making these simplifications, Z-in-Isabelle is able to provide a useful proof
environment for a large class of reasoning problems in Z.

11

3.1.4 Z in Isabelle/HOL

An indication of the great generality of Isabelle is that a second encoding ofZ in Isa-
belle has been produced by Kolyang, Santen, and Wolff (1996), and this has little in
common with Z-in-Isabelle. This encoding is built using Isabelle’s HOL theory. Its
chief contribution is to provide an encoding which still allows schemas to be modelled
as logical entities (in fact, as predicates). It is claimed that this is done in amanner
which ‘essentially conforms with latest draft of the Z standard’. The encoding is nev-
ertheless described as ‘shallow’ because not all aspects of Z semantics are represented
in logical terms—Z’s distinctive treatment ofnamesis not represented in the logic; the
parser keeps track of these, and schema component variables are essentially anonym-
ous (i.e. schema equivalence is preserved only up to alpha-conversion).

Schemas are denoted by characteristic functions. A schema is represented as a
predicate over a tuple of variables. A schema and its representation are shownbelow.Sx : Ny : Zf : Z� ZP x f y consts S:: "int <=> int * int * int => bool".

def S == SB f.SB x.SB0 y.[x:N & y:Z &
f:Z>-->Z | P x f y]

The termSB is defined so that it behaves like a quantifier, and is suppressed by
the pretty-printer; that is, a schema is denoted by a lambda-abstraction.The parser
keeps track of schema signatures internally, so that the reference to schemaS in a
context may be replaced by an applicationS x , wherex represents those variables of
the surrounding context which are to be identified with those declared in S . Observe
that at this level (hidden from the user) the identifiers in the schema’s signature are
sorted lexicographically, to facilitate matching.

This representation permits user reasoning about schemas—staying at the level of
the schema calculus, say—without expanding the schema definitions. In this way,
Kolyang et al. achieve similar results to those presented in the logic ofthe Standard.
Again, large schemas present performance problems.

3.1.5 JigsaW v1

JigsaW v1 (Martin, 1993) uses the 2OBJ logical framework to implement a proof tool
based onW (Woodcock and Brien, 1992). In so far asW is sound,11 this is a successful
attempt to provide a proof tool faithful to the Z standard. However,the overheads
involved in supporting the context-sensitive notions of free variables and substitution
using 2OBJ (which was itself a very experimental tool) rendered the resulting system
cripplingly inefficient.

3.1.6 Cogito

Cogito (Nickson et al., 1996) offers an integrated methodology and tool-set for Z-style
developments from specification through to executable code (in Ada, at present). A
variant of Z, calledSumis used as the specification notation, and the accompanying
proof tool is calledErgo.

11W turns out to place heavy restrictions on the naming of variables, and so is not very practical.

12

Ergo is a generic theorem-prover, but Cogito is its biggest user, and has thus influ-
enced the design of both the core tool and its libraries. Sum is modelled using Ergo’s
Zermelo-Fraenkel theory of sets. The modelling follows the semantics ofthe stand-
ard, as mentioned in Section 2.2.2. Therefore, when a Sum specification is translated
into Ergo, the environment in which each predicate is to be evaluated is madeexpli-
cit. Schemas are characteristic functions, returning ‘true ’ if the environment contains
a situation of the schema, and ‘false ’ otherwise. The resulting predicates look rather
forbidding, but advanced tactics simplify them into more recognisable forms.

This approach has elements in common with the approach of Z in Isabelle/HOL
(Section 3.1.4) in the use of characteristic functions to model schemas, but here the
names are used within the logical theory to match schema components to the current
environment, whereas in Isabelle/HOL this work is accomplished entirely inthe parser.

The result is a potentially faithful model of the context-sensitiveschema semantics
presented above, though in a rather impenetrable form. Bindings are not supported,
and so schemas as types are not allowed, though it would be a straightforward task to
add this facility within the existing model.

3.1.7 Z/HOL

A paper by Bowen and Gordon (1994), (1995) describes a simple ‘ “shallow” semantic
embedding’ of Z in the HOL system. This approach makes no special concessionsto
Z’s unusual use of names, though it offers limited support for bindings as tuples of
name-value pairs. The paper serves as a good description of the issues surrounding
semantic embeddings (in HOL, in particular).

The paper offers the following shibboleth as a means of distinguishing shallow and
deep embeddings: only in the latter will the property of commutativityof schema con-
junction be provable. In a shallow embedding the schema conjunction will be converted
into something else (logical conjunction, typically), rendering the question meaning-
less.

3.1.8 ProofPower

In contrast, ProofPower is quite a deep embedding of Z in HOL, complete with extens-
ive support for reasoning about Z specifications. Early papers on ProofPower include
those by Arthan (1991) and Jones (1992); recent information is to be found on a web
site (Arthan, 1997). In ProofPower Z, bindings are accurately modelled as logical ob-
jects, and the type system is extended to support this use.

Bowen and Gordon (1994) remark, however that this encoding is still insufficient
to be able to prove the commutativity of schema conjunction. This is largely because
there is no way to write a postulate about ‘all schemas’; the modelling has sufficient
depth. They further remark that there is no single semantic function defined in the logic
that maps Z syntax into its meaning.

ProofPower is committed to compliance with the emerging Z standard, though it
does not appear that a formal result about the faithfulness of its logic with respect to the
Standard’s semantics is expected. Of all the tools described in this paper, ProofPower
is probably the most mature.

13

3.1.9 PVS and Z

As part of the ProCos project, Engel and Skakkebæk (1994) describe the application of
the PVS system to Z specifications (particularly those in a timed variant ofZ, for use
with the duration calculus). We might call this a ‘super-shallow’ embedding, since it
actually entails a translation from Z into the specification language of PVS.All proofs
are carried out in PVS, with no special reference to the Z specifications from which the
terms originate.

In this case, the mapping from Z schemas to PVS theories is described as being
quite straightforward; there is a close, though not perfect match between the two. The
language of Z expressions is a greater challenge, however, as PVS is based on a theory
of total functions, in contrast to Z’s set theory and partial functions.A faithful model
of Z functions in PVS is presented, but as a consequence, the resulting PVS terms are
rather complicated, and cannot utilise much of the power of the automation provided
in PVS for specifications written in its own native style. PVS and Z remain antithetical
in their approaches.

Also relevant, since it deals with B’s abstract machine notation, which isclosely
related to Z, is work by Pratten (1995) on using PVS in place of the B tool.

3.1.10 Z in LEGO/Type Theory

Maharaj (1994) describes a careful study of how to encode the schema calculus using
the unifying theory of dependent types (UTT), as implemented in the LEGO proof-
checker. Various possible representations are explored, taking account of some of the
issues raised in Section 2.2.2. The use of schemas to define types is explicitly excluded,
and since UTT employs an intuitionistic logic (whereas Z is generally taken to be
classical), the encoding necessarily covers only a restricted part of Z. Earlierwork
(1990) describes ‘implementing’ Z using LEGO.

3.2 Special Implementations

Clearly, the alternative to using a logical framework or general-purpose proof tool is
to construct one from scratch. In doing so, one can avoid all interface problems, by
arranging for tool interfaces to permit real Z specifications to be read, written, and
manipulated. Moreover, in this way it is possible to side-step problems of soundness
by implementing precisely a published account of a logic for Z, such as theone in
the Z standard.12 The implementation is able to provide full support for bindings and
schemas as first-class objects, and to evaluate accurately Z’s context-sensitive notions
of bound and free variables.

The chief drawback of this approach is the inherently small base of theories, tactics,
and user experience on which to draw. A longer implementation time is alsoto be
expected, of course, and potentially poorer performance of the finished product (though
JigsaW1, implemented with 2OBJ, was between two and three orders of magnitude
slowerthanJigsaW2, implemented directly in Haskell).

12As no proof of the soundness of that system is offered, the question of whether or not this is wise is moot.
Moreover, as soon as the implementor chooses to change/enhance the published account, a new problem of
soundness arises.

14

3.2.1 JigsaW v2

A second version ofJigsaW has been constructed, implemented directly in Haskell.
Some of its features are described in (Brien and Martin, 1995), as it has been developed
with the specific aim of supportingpreciselythe logic described in the Z Standard.
Because the Z Standard has yet to stabilise, the tool is not yet in a generally-usable
state.

3.2.2 Zola (Balzac)

Zola (a commercial version of the tool developed asBalzac(Harwood, 1991; Ashoo,
1992)) is based on a custom-designed logic, closely related toW .

The tool represents a considerable number of man-years of effort, and so isrelat-
ively mature. It has been developed in close co-operation with the Standardsactivity,
and may be expected to conform with the Z Standard.

3.2.3 CADiZ
The CADiZ tool development has gone through a number of stages. Early versions
supported type-checking and typesetting of Z specifications (Jordan, McDermid, and
Toyn, 1991; Toyn and McDermid, 1995). More recently, CADiZ has begun to support
proof (Toyn, 1996). The tool has a highly visual user interface, and isbased onW . An
ad hocimplementation of substitution is used, but conformance (or convergence) with
the Standard is claimed. A tactic language similar to that used inJigsaW is available
for writing proof procedures.

4 Concluding Remarks

This paper has surveyed some of the features of Z which make the provision of proof
tool support an interesting task. It has also considered the approaches which have been
taken to date in meeting that challenge.

The key feature of Z which complicates tool support is its use of names, and the
consequential complexity of the semantics of Z schemas. This has a wide impact be-
cause it means that substitution in Z is not readily implemented using the replace-
ment/rewriting tools which come with most proof frameworks.

4.1 The state of the art

If a generic theorem-proving tool is used, we have seen that a difference of basic con-
cepts may render the resulting system somewhat distant from Z. In some cases this is
quite marked—PVS, for example, uses entirely the wrong paradigm—in others it is less
immediately obvious, but lacking bindings as first-class objects, or context-sensitive
free variable calculations, is a significant problem. By making shallow embeddings,
such problems can be avoided for large classes of specifications, and a useful tool con-
structed. However, the translation to a host logic is necessarily a complicated step, re-
quiring much of the apparatus of a Z logic itself. Having made the translation, the user
must reason in something akin to a model theory for Z, which has attendant problems.
The success of Z as a specification notation can be attributed largely to the structuring
made possible by schemas. If this structuring is lost or obscured in the proof activity,
proof will quickly become difficult and/or error-prone.

15

Specially-constructed tools are starting from ‘further back’ and still have a lot of
catching-up to do. They have the potential to support Z substitution, schemas and
bindings at a high level, but much of the benefit of doing so is yet to berealised.

In both cases, soundness with respect to the Standard semantics of Z has not been
formally addressed. In this regard, the specially-constructed tools possibly have an
advantage, since they incorporate a single logical system which is amenableto a proof
of soundness. In all but the deepest embeddings, by contrast, some elements of the
proof of soundness will rely on the work of the translator, and someon the way that
terms are embedded in the host logic.

This form of soundness is often termed ‘faithfulness’. There may be little doubt
that the host logic is itself sound, but that is not a guarantee that the transformation
of Z terms into that system produces a sound (faithful) means of reasoning about Z
specifications.

For the time being, there is a spectrum of options, some of which inspire higher
confidence in their probable soundness, some of which are obviously supporting Z (as
distinct from something which appears similar to Z, but in fact has quitedifferent se-
mantics), and some of which are actually useful for doing industrially-relevant proofs.

4.2 Future Directions

One way to mitigate questions about soundness, whilst retaining access to existing
proof tools, might be to develop a framework in which a well-established proof tool is
used to discover proofs, and a small, highly-trusted custom-built proof-checker is used
to validate them.

In any case, it is highly desirable to achieve libraries of theories, lemmas and tactics
for the Z world. There is every reason to suppose that such libraries could be made
portable across various proof tools, since most work from a common collection of
definitions in the Z mathematical toolkit. Spivey’s account of the mathematical toolkit
includes a large number of laws relating the constructs defined there. A library of
such lawstogether with tactics describing their proofsshould be portable enough to be
incorporated into any proof tool supporting Z.

Reasoning about schemas is, as we have seen, more problematic than proving
toolkit properties. Since most Z specifications will not use the mostexotic properties
of schemas, however, even the systems which take the greatest liberties with schema
semantics will often deliver correct results. Therefore, we might go further and con-
sider proof strategies appropriate to common Z activities (standard theorems about
specifications, etc.) which could again be used in both interactive tools, andtrusted
proof-checkers.

In conclusion, whilst no single proof tool technology is a clear winner at present,
given that we have general agreement on the semantics of Z and the definitions to be
used in the mathematical toolkit, there is every reason to suppose that weshould be
able to extend the Z mathematical toolkit into a proof toolkit. If we canachieve this,
the implementation technology may eventually become irrelevant.

References

Abrial, J.-R. (1996).The B-Book: Assigning Programs to Meanings, Cambridge Uni-
versity Press.

16

Arthan, R. D. (1991). Formal specification of a proof tool,in S. Prehn and W. J.
Toetenel (eds),VDM’91: Formal Software Development Methods, Vol. 551 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 356–370.

Arthan, R. D. (1997). The ProofPower web pages.
URL: http://www.trireme.demon.co.uk/

Ashoo, K. (1992). The Genesis Z tool – an overview,BCS-FACS FACTSSeries II,
3(1): 11–13.

Barnes, J. (1997).High Integrity Ada: The SPARK Approach, Addison-Wesley.

Bloesch, A., Kazmierczak, E., Kearney, P., and Traynor, O. (1994). The Cogito meth-
odology and system,Asia–Pacific Software Engineering Conference ’94, pp. 345–
355.

Bowen, J. P. and Gordon, M. J. C. (1994). Z and HOL,in Bowen and Hall (1994),
pp. 141–167.
URL: http://www.comlab.ox.ac.uk/archive/z/zum94.html

Bowen, J. P. and Gordon, M. J. C. (1995). A shallow embedding of Z in HOL, Inform-
ation and Software Technology37(5-6): 269–276.

Bowen, J. P. and Hall, J. A. (eds) (1994).Z User Workshop, Cambridge 1994, Work-
shops in Computing, Springer-Verlag.
URL: http://www.comlab.ox.ac.uk/archive/z/zum94.html

Bowen, J. P., Hinchey, M. G., and Till, D. (eds) (1997).ZUM’97: The Z Formal Spe-
cification Notation, 10th International Conference of Z Users, Reading, UK, April
1997, Proceedings, Vol. 1212 ofLecture Notes in Computer Science, Springer-
Verlag, Berlin Heidelberg.

Brien, S. M. (1994). The development of Z,in D. J. Andrews, J. F. Groote, and C. A.
Middelburg (eds),Semantics of Specification Languages (SoSL), Workshops in
Computing, Springer-Verlag, pp. 1–14.

Brien, S. M. (1995).A Model and Logic for Generically Typed Set Theory (Z), D.Phil.
thesis, University of Oxford. New version expected 1997.

Brien, S. M. and Martin, A. P. (1995). A tutorial on proof in StandardZ, Tech-
nical Monograph PRG-120, Programming Research Group, Oxford University
Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK.
Presented at ZUM’95.

Engel, M. and Skakkebæk, J. U. (1994). Applying PVS to Z,ProCoS II Technical
Report IT/DTU ME 3/1, Department of Computer Science, Technical University
of Denmark.
URL: ftp://ftp.id.dth.dk/pub/ProCoS/Marcin.Engel/IDDTH-ME-3-1.ps.Z

Harwood, W. T. (1991). Proof rules for Balzac,Technical Report WTH/P7/001, Imper-
ial Software Technology, Cambridge, UK.

Hodges, W. (1995). The meaning of specifications I: Domains and initial models,
Theoretical Computer Science152: 67–89.

17

Jones, R. B. (1992). ICL ProofPower,BCS-FACS FACTSSeries III, 1(1): 10–13.

Jordan, D., McDermid, J. A., and Toyn, I. (1991). CADiZ – computer aided design in
Z, in Nicholls (1991), pp. 93–104.
URL: http://www.dcs.gla.ac.uk/springer-verlag/50.html

Kolyang, Santen, T., and Wolff, B. (1996). A structure preserving encoding of Z in Isa-
belle/HOL,1996 International Conference on Theorem Proving in Higher Order
Logic, Springer-Verlag.

Kraan, I. and Baumann, P. (1995). Implementing Z in Isabelle,in J. P. Bowen and
M. G. Hinchey (eds),ZUM’95: The Z Formal Specification Notation, Vol. 967 of
LNCS, Springer-Verlag, pp. 355–373.

Lupton, P. J. L. (1991). Z and undefinedness,Technical Report PRG/91/68, Z Standards
Panel / Programming Research Group.

Maharaj, S. (1990).Implementing Z in LEGO, Msc thesis, The University of Edin-
burgh.

Maharaj, S. (1994). Encoding Z-style schemas in type theory,in H. Geuves (ed.),
TYPES ’93: Types for Proofs and Programs, Vol. 806 ofLecture Notes in Com-
puter Science, Springer-Verlag.
URL: http://www.cs.stir.ac.uk/˜ sma/publications/SchemasinUTT.ps

Martin, A. (1993). Encoding W: A logic for Z in 2OBJ,in J. C. P. Woodcock and
P. G. Larsen (eds),FME’93: Industrial-Strength Formal Methods, Vol. 670 of
Lecture Notes in Computer Science, Formal Methods Europe, Springer-Verlag,
pp. 462–481.

Neilson, D. S. and Prasad, D. (1992). zedB: A proof tool for Z built on B, in Nicholls
(1992), pp. 243–258.
URL: http://www.dcs.gla.ac.uk/springer-verlag/21.html

Nicholls, J. E. (ed.) (1991).Z User Workshop, Oxford 1990, Workshops in Computing,
Springer-Verlag.
URL: http://www.dcs.gla.ac.uk/springer-verlag/50.html

Nicholls, J. E. (ed.) (1992).Z User Workshop, York 1991, Workshops in Computing,
Springer-Verlag.
URL: http://www.dcs.gla.ac.uk/springer-verlag/21.html

Nicholls, J. (ed.) (1995).Z Notation, Z Standards Panel, ISO Panel JTC1/SC22/WG19
(Rapporteur Group for Z). Version 1.2, ISO Committee Draft; CD 13568.
URL: ftp://ftp.comlab.ox.ac.uk/pub/Zforum/ZSTAN/drafts

Nickson, R., Traynor, O., and Utting, M. (1996). Cogito Ergo Sum: Providing struc-
tured theorem prover support for specification formalisms,in K. Ramamohanarao
(ed.), Proceedings of the Nineteenth Australasian Computer Science Confer-
ence (ACSC’96), Vol. 18(1) of Australian Computer Science Communications,
pp. 149–158.

Parker, C. E. (1991). Z tools catalogue,ZIP project report ZIP/BAe/90/020, British
Aerospace, Software Technology Department, Warton PR4 1AX, UK.

18

Pratten, C. H. (1995). An introduction to proving AMN specifications with PVS and the
AMN-PROOF tool,in H. Habrias (ed.),Z Twenty Years on – What is its Future?,
IRIN (Institut de Recherche en Informatique de Nantes), Université de Nantes,
France, pp. 149–165.

Saaltink, M. (1992). Z and Eves,in Nicholls (1992), pp. 223–242.
URL: http://www.ora.on.ca/biblio.html#mark:z-and-eves
URL: http://www.ora.on.ca/biblio.html#mark:z-eves

Saaltink, M. (1997). The Z/EVES system,in Bowen et al. (1997), pp. 72–85.

Spivey, J. M. (1988).Understanding Z: A Specification Language and its Formal Se-
mantics, Vol. 3 ofCambridge Tracts in Theoretical Computer Science, Cambridge
University Press.

Spivey, J. M. (1992).The Z Notation: A Reference Manual, second edn, Prentice-Hall.

Spivey, J. M. and Sufrin, B. A. (1990). Type inference in Z,in D. Bjørner, C. A. R.
Hoare, and H. Langmaack (eds),VDM’90: VDM and Z—Formal Methods in
Software Development, Vol. 428 ofLecture Notes in Computer Science, Springer-
Verlag, pp. 426–451.

Spivey, M. (1996). Richer types for z,Formal Aspects of Computing8(5): 565–584.

Steggles, P. and Hulance, J. (1994). Z tools survey. Imperial Software Technology Ltd.
/ Formal Systems (Europe) Ltd.
URL: ftp://ftp.ist.co.uk/pub/doc/zola/ztool-survey.ps

Stepney, S., Barden, R., and Cooper, D. (eds) (1992).Object Orientation in Z, Work-
shops in Computing, Springer-Verlag.
URL: http://www.dcs.gla.ac.uk/springer-verlag/30.html

Toyn, I. (1996). Formal reasoning in the Z notation using CADiZ,Proc. 2nd Workshop
on User Interfaces to Theorem Provers, York.
URL: ftp://ftp.cs.york.ac.uk/hisereports/cadiz/uitp.ps.Z

Toyn, I. and McDermid, J. A. (1995). CADiZ: An architecture for Z tools and its
implementation,Software—Practice and Experience25(3): 305–330.

Woodcock, J. C. P. and Brien, S. M. (1992).W : A Logic for Z, Proceedings 6th Z
User Meeting, Springer-Verlag.

Woodcock, J. C. P. and Davies, J. (1996).Using Z: Specification, Refinement, and
Proof, Prentice-Hall, Europe.

Acknowledgements

The perspectives described here have arisen out of many conversations with colleagues
over many years. Stephen Brien and Jim Woodcock have been the most influential
in helping my understanding. Other members of the Z Standards committeeand the
SVRC have contributed insight, too. Special thanks to Ian Toyn, Ina Kraan, Mark
Saaltink, and Thomas Santen for discussions about their respective prooftools, and to
Peter Kearney for comments on an earlier draft of this report.

19

View publication statsView publication stats

https://www.researchgate.net/publication/2644718

