

Reference number
ISO/IEC 13568:2002(E)

© ISO/IEC 2002

INTERNATIONAL
STANDARD

ISO/IEC
13568

First edition
2002-07-01

Information technology — Z formal
specification notation — Syntax, type
system and semantics

Technologies de l'information — Notation Z pour la spécification formelle —
Syntaxe, système de caractères et sémantique

ISO/IEC 13568:2002(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2002
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.
Permission is granted to reproduce mathematical definitions (i.e. syntactic definitions, syntactic transformations, type inference rules, semantic
transformations and semantic relations) from this ISO standard, free of charge, on condition that the following statement is reproduced.

“Mathematical definitions from ISO/IEC 13568:2002 (Z standard) are copyright ISO.”
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch

Printed in Switzerland

ii © ISO/IEC 2002 – All rights reserved

ISO/IEC 13568:2002(E)

Contents Page

Foreword . v

Introduction . vi

1 Scope . 1

2 Normative references . 1

3 Terms and definitions . 1

4 Metalanguages . 3

5 Conformance . 15

6 Z characters . 18

7 Lexis . 24

8 Concrete syntax . 30

9 Characterisation rules . 39

10 Annotated syntax . 40

11 Prelude . 43

12 Syntactic transformation rules . 44

13 Type inference rules . 55

14 Semantic transformation rules . 66

15 Semantic relations . 71

Annex A (normative) Mark-ups . 79

Annex B (normative) Mathematical toolkit . 94

Annex C (normative) Organisation by concrete syntax production . 111

Annex D (informative) Tutorial . 158

Annex E (informative) Conventions for state-based descriptions . 173

Bibliography . 175

Index . 176

c©ISO/IEC 2002—All rights reserved iii

ISO/IEC 13568:2002(E)

Figures

1 Phases of the definition . 16
B.1 Parent relation between sections of the mathematical toolkit . 94
D.1 Concrete parse tree of birthday book example . 161
D.2 Tree of birthday book example after syntactic transformation . 164
D.3 Annotated tree of axiomatic example . 165
D.4 Annotated tree of generic example . 168
D.5 Annotated tree of chained relation example . 172

Tables

1 Syntactic metalanguage . 3
2 Parentheses in metalanguage . 4
3 Propositional connectives in metalanguage . 5
4 Quantifiers in metalanguage . 5
5 Abbreviations in quantifications in metalanguage . 5
6 Conditional expression in metalanguage . 5
7 Propositions about sets in metalanguage . 6
8 Basic set operations in metalanguage . 6
9 Powerset in metalanguage . 7
10 Operations on natural numbers in metalanguage . 7
11 Decorations of names in metalanguage . 7
12 Tuples and Cartesian products in metalanguage . 8
13 Function comprehensions in metalanguage . 8
14 Relations in metalanguage . 8
15 Proposition about relations in metalanguage . 8
16 Functions in metalanguage . 9
17 Application in metalanguage . 9
18 Sequences in metalanguage . 9
19 Disjointness in metalanguage . 9
20 Metavariables for phrases . 10
21 Metavariables for operator words . 11
22 Environments . 12
23 Metavariables for environments . 12
24 Variables over type universe . 12
25 Type relations . 12
26 Type sequents . 13
27 Semantic universe . 14
28 Variables over semantic universe . 14
29 Semantic relations . 14
30 Semantic idioms . 15
31 Operator precedences and associativities . 37

iv c©ISO/IEC 2002—All rights reserved

ISO/IEC 13568:2002(E)

Foreword

c©ISO/IEC 2002—All rights reserved v

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the
specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the
development of International Standards through technical committees established by the respective organization to deal with
particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In
the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by
the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires
approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 13568 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 22,
Programming languages, their environments and system software interfaces.

Annexes A to C form a normative part of this International Standard. Annexes D and E are for information only.

ISO/IEC 13568:2002(E)

Introduction

This International Standard specifies the syntax, type system and semantics of the Z notation, as used in formal
specification.

A specification of a system should aid understanding of that system, assisting development and maintenance of the
system. Specifications need express only abstract properties, unlike implementations such as detailed algorithms,
physical circuits, etc. Specifications may be loose, allowing refinement to many different implementations. Such
abstract and loose specifications can be written in Z notation.

A specification written in Z notation models the specified system: it names the components of the system and
expresses the constraints between those components. The meaning of a Z specification—its semantics—is defined
as the set of interpretations (values for the named components) that are consistent with the constraints.

Z uses mathematical notation, hence specifications written in Z are said to be formal: the meaning is captured
by the form of the mathematics used, independent of the names chosen. This formal basis enables mathematical
reasoning, and hence proofs that desired properties are consequences of the specification. The soundness of
inference rules used in such reasoning should be proven relative to the semantics of the Z notation.

This International Standard establishes precise syntax and semantics for a system of notation for mathematics,
providing a basis on which further mathematics can be formalized.

Particular characteristics of Z include:

• its extensible toolkit of mathematical notation;

• its schema notation for specifying structures in the system and for structuring the specification itself; and

• its decidable type system, which allows some well-formedness checks on a specification to be performed
automatically.

Examples of the kinds of systems that have been specified in Z include:

• safety critical systems, such as railway signalling, medical devices, and nuclear power systems;

• security systems, such as transaction processing systems, and communications; and

• general systems, such as programming languages and floating point processors.

Standard Z will also be appropriate for use in:

• formalizing the semantics of other notations, especially in standards documents.

This is the first ISO standard for the Z notation. Much has already been published about Z. Most uses of the
Z notation have been based on the examples in the book “Specification Case Studies” edited by Hayes [2][3].
Early definitions of the notation were made by Sufrin [14] and by King et al [8]. Spivey’s doctoral thesis showed
that the semantics of the notation could be defined in terms of sets of models in ZF set theory [11]. His book
“The Z Notation—A Reference Manual” [12][13] is the most complete definition of the notation, prior to this
International Standard. Differences between Z as defined here and as defined in [13] are discussed in [15]. This
International Standard addresses issues that have been resolved in different ways by different users, and hence
encourages interchange of specifications between diverse tools. It also aims to be a complete formal definition of
Z.

vi c©ISO/IEC 2002—All rights reserved

INTERNATIONAL STANDARD ISO/IEC 13568:2002(E)

Information technology—
Z formal specification notation—
Syntax, type system and semantics

1 Scope

The following are within the scope of this International Standard:

• the syntax of the Z notation;

• the type system of the Z notation;

• the semantics of the Z notation;

• a toolkit of widely used mathematical operators;

• LATEX [10] and e-mail mark-ups of the Z notation.

The following are outside the scope of this International Standard:

• any method of using Z, though an informative annex (E) describes one widely-used convention.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions
of this International Standard. For dated references, subsequent amendments to, or revisions of, any of these
publications do not apply. However, parties to agreements based on this International Standard are encouraged
to investigate the possibility of applying the most recent editions of the normative documents indicated below.
For undated references, the latest edition of the normative document referred to applies. Members of ISO and
IEC maintain registers of currently valid International Standards.

ISO/IEC 10646-1:2000, Information technology—Universal Multiple-Octet Coded Character Set (UCS)—Part 1:
Architecture and Basic Multilingual Plane, with amendment 1, with its amendments and corrigenda

ISO/IEC 10646-2:2001, Information technology—Universal Multiple-Octet Coded Character Set (UCS)—Part 2:
Supplementary Planes

ISO/IEC 14977:1996, Information technology—Syntactic metalanguage—Extended BNF

3 Terms and definitions

For the purposes of this International Standard, the following terms and definitions apply. Italicized terms in
definitions are themselves defined in this list.

3.1
binding
finite function from names to values

c©ISO/IEC 2002—All rights reserved 1

ISO/IEC 13568:2002(E) 4 Metalanguages

3.2
capture
cause a reference expression to refer to a different declaration from that intended

3.3
carrier set
set of all values in a type

3.4
constraint
property that is either true or false

3.5
environment
function from names to information used in type inference

3.6
interpretation
function from global names of a section to values in the semantic universe

3.7
metalanguage
language used for defining another language

3.8
metavariable
name denoting an arbitrary phrase of a particular syntactic class

3.9
model
interpretation that makes the defining constraints of the corresponding section be true

3.10
schema
set of bindings

3.11
scope of a declaration
part of a specification in which a reference expression whose name is the same as a particular declaration refers
to that declaration

3.12
scope rules
rules determining the scope of a declaration

3.13
semantic universe
set of all semantic values, providing representations for both non-generic and generic Z values

3.14
signature
function from names to types

3.15
type universe
set of all type values, providing representations for all Z types

3.16
Z core language
Z notation defined by this International Standard excepting the notation of the mathematical toolkit

2 c©ISO/IEC 2002—All rights reserved

4 Metalanguages ISO/IEC 13568:2002(E)

3.17
ZF set theory
Zermelo-Fraenkel set theory

4 Metalanguages

The metalanguages are the notations used to define the syntax, type system and semantics of Z.

4.1 Syntactic metalanguage

The syntactic metalanguage used is the subset of the standard ISO/IEC 14977:1996 [7] summarised in Table 1,
with modifications so that the mathematical symbols of Z can be presented in a more comprehensible way.

Table 1 — Syntactic metalanguage

Symbol Definition
= defines a non-terminal on the left in terms of the syntax on the right.
| separates alternatives.
, separates notations to be concatenated.
— separates notation on the left from notation to be excepted on the right.
{ } delimit notation to be repeated zero or more times.
[] delimit optional notation.
() are grouping brackets (parentheses).
’ ’ delimit a terminal symbol.
; terminates a definition.
? ? delimit informal definition of notation.

(* *) delimit commentary.

The infix operators | and , have precedence such that parentheses are needed when concatenating alternations,
but not when alternating between concatenations. The exception notation is always used with parentheses, making
its precedence irrelevant. Whitespace separates tokens of the syntactic metalanguage; it is otherwise ignored.

EXAMPLE The lexis of a NUMERAL token, and its informal reading, are as follows.

NUMERAL = NUMERAL , DECIMAL

| DECIMAL

;

The non-terminal symbol NUMERAL stands for a maximal sequence of one or more decimal digit characters (without
intervening white space).

The changes to ISO/IEC 14977:1996 allow use of mathematical symbols in the names of non-terminals, and are
formally defined as follows.

Meta identifier character = ? all cases from ISO/IEC 14977:1996 ?
| ’(’ | ’)’ | ’[’ | ’]’ | ’{’ | ’}’ | ’〈|’ | ’|〉’ | ’〈〈’ | ’〉〉’
| ’P’ | ’:’ | ’,’ | ’|’ | ’&’ | ’\’ | ’/’ | ’.’ | ’; ’ | ’ ’ | ’=’
| ’?’ | ’`’ | ’∀ ’ | ’•’ | ’∃ ’ | ’⇔’ | ’⇒’ | ’∨’ | ’∧’ | ’¬ ’
| ’∈’ | ’�’ | ’×’ | ’λ ’ | ’µ ’ | ’θ ’ | ’o

9’ | ’>>’ | ’ o
o ’

;

NOTE This anticipates a future version of ISO/IEC 14977:1996 permitting use of the characters of ISO/IEC
10646 [5][6].

The following standard metalanguage characters have been overloaded as Meta identifier characters: ’=’,
’|’, ’,’, ’{’, ’}’, ’[’, ’]’, ’(’, ’)’ and ’;’. Uses of them as Meta identifiers are with the common

c©ISO/IEC 2002—All rights reserved 3

ISO/IEC 13568:2002(E) 4 Metalanguages

suffix -tok, e.g. (-tok, which may be viewed as a postfix metalanguage operator. Uses of them as meta-operators
are further distinguished by preceding and following these uses with space.

A further change to ISO/IEC 14977:1996 is the use of multiple fonts: metalanguage characters and non-terminals
are in typewriter, those non-terminals that correspond to Z tokens appear as those Z tokens normally appear,
typically in Roman, and comments are in italic.

The syntactic metalanguage is used in defining Z characters, lexis, concrete syntax and annotated syntax (clauses
6, 7, 8 and 10).

4.2 Mathematical metalanguage

4.2.1 Introduction

Logic and ZF set theory are the basis for the semantics of Z. In this section the specific notations used are
described. The notations used here are deliberately similar in appearance to those of Z itself, but are grounded
only on the logic and set theory developed by the wider mathematical community.

The mathematical metalanguage is used in type inference rules and in semantic relations (clauses 13 and 15).

4.2.2 Parentheses

The forms of proposition and expression are given below. Where there could be any ambiguity in the parsing,
usually parentheses have been used to clarify, but in any other case the precedence conventions of Z itself are
intended to be used.

The use of parentheses is given in tabular form in Table 2, where p stands for any proposition and e stands for
any expression.

Table 2 — Parentheses in metalanguage

Notation Definition
(p) p
(e) e

The same brackets symbols are used around pairs and tuple extensions (Table 12), but those cannot be omitted
in this way.

4.2.3 Propositions

4.2.3.1 Introduction

The value of a metalanguage proposition is either true or false. The values true and false are distinct. In this
International Standard, no proposition of the metalanguage is both true and false; that is, this metatheory is
consistent. Furthermore, every proposition is either true or false, even where it is not possible to say which; that
is, the logic is two-valued.

4.2.3.2 Propositional connectives

The propositional connectives of negation, conjunction and disjunction are used. In Table 3 and later, p, p2, etc,
represent arbitrary propositions.

Conjunction is also sometimes indicated by writing propositions on successive lines, as a vertical list.

4.2.3.3 Quantifiers

Existential, universal and unique-existential quantifiers are used. In Tables 4 and 5 and later, i , i2, etc, represent
arbitrary names, e, e2, etc, represent arbitrary expressions, and ... represents zero or more repetitions of the
surrounding formulae; in these tables, the propositions can contain references to the names, but the expressions
cannot.

4 c©ISO/IEC 2002—All rights reserved

4 Metalanguages ISO/IEC 13568:2002(E)

Table 3 — Propositional connectives in metalanguage

Notation Name Definition
¬ p negation true iff p is false
p1 ∧ p2 conjunction true iff p1 and p2 are both true
p1 ∨ p2 disjunction false iff p1 and p2 are both false

Table 4 — Quantifiers in metalanguage

Notation Name Definition
∃ i1 : e1; ...; in : en • p existential quantification there exist (∃) values of i1 in set e1, ..., in in set

en (i1 : e1; ...; in : en) such that (•) p is true

∀ i1 : e1; ...; in : en • p universal quantification for all (∀) values of i1 in set e1, ..., in in set en

(i1 : e1; ...; in : en), it is true that (•) p is true

∃1 i1 : e1; ...; in : en • p unique existential quantification there exists exactly one (∃1) configuration of val-
ues i1 in set e1, ..., in in set en (i1 : e1; ...; in :
en) such that (•) p is true

Certain abbreviations in the writing of quantifications are permitted, as given in Table 5. Some of their expansions
involve lesser abbreviations.

Table 5 — Abbreviations in quantifications in metalanguage

Notation Definition
i1, i2, ..., in : e i1 : e; i2, ..., in : e
∃ i1, i2, ..., in : e | p1 • p2 ∃ i1, i2, ..., in : e • p1 ∧ p2

∀ i1, i2, ..., in : e | p1 • p2 ∀ i1, i2, ..., in : e • (¬ p1) ∨ p2

∃1 i1, i2, ..., in : e | p1 • p2 ∃1 i1, i2, ..., in : e • p1 ∧ p2

4.2.3.4 Conditional expression

The conditional expression allows the choice between two alternative values according to the truth or falsity of a
given proposition, as defined in Table 6.

Table 6 — Conditional expression in metalanguage

Notation Definition
if p then e1 else e2 either p is true and e1 is the value, or p is false and e2 is the value

4.2.4 Sets

4.2.4.1 Introduction

The notation used here is based on ZF set theory, as described in for example [1], and the presentation here is
guided by the order given there. In that theory there are only sets. Members of sets can be only other sets. The
word “element” may be used loosely when referring to set members treated as atomic, without regard to their
set nature. If metalanguage operations are applied to inappropriate arguments, they produce unspecified results
rather than being undefined.

c©ISO/IEC 2002—All rights reserved 5

ISO/IEC 13568:2002(E) 4 Metalanguages

4.2.4.2 The universe

The universe, U, denotes a world of sets, providing semantic values for Z expressions. U is big enough to contain
the set NAME from which Z names are drawn, and an infinite set. Also, U is closed under formation of powersets
and products. The formation of a suitable U comprising models of sets and tuples, as needed to model Z, is
well-known in ZF set theory and is assumed in this International Standard. A Z binding is modelled by a ZF
set of pairs of NAME and value. A Z generic is modelled by a ZF set of pairs (a function) from sets (the generic
arguments) to a value (the instantiated generic).

4.2.4.3 Propositions about sets and elements

The simplest propositions about sets are the relationships of membership, non-membership, subset and equality
between sets or their elements, as detailed in Table 7.

Table 7 — Propositions about sets in metalanguage

Notation Name Definition
e1 ∈ e1 membership true iff e1 is a member of set e2

e1 6∈ e2 non-membership ¬ e1 ∈ e2

e1 ⊆ e2 subset ∀ i : e1 • i ∈ e2

e1 = e2 equality for e1 and e2 considered as sets, e1 ⊆ e2 ∧ e2 ⊆ e1

4.2.4.4 Basic set operations

ZF set theory constructs its repertoire of set operations starting with the axiom of empty set, then showing how
to build up sets using the axioms of pairing and of union, and how to trim them back with the axiom of subset
or separation.

For the purposes of this mathematical metalanguage, the simplest form of set comprehension is defined directly
using the axiom of separation in Table 8. The existence of a universal set U is assumed. Other forms of set
comprehension are defined in terms of the simplest form, using rules in which i is any name distinct from those
already in use. Also defined in Table 8 are notations for empty set, finite set extensions, unions, intersections and
differences.

Table 8 — Basic set operations in metalanguage

Notation Name Definition
{i : e | p} set comprehension subset of elements i of e such that p, by axiom of separation
{i1 : e1; ...; in : en • e} set comprehension {i : U | ∃ i1 : e1; ...; in : en • i = e}
{i1 : e1; ...; in : en | p • e} set comprehension {i : U | ∃ i1 : e1; ...; in : en | p • i = e}
∅ empty set {i : U | false}
{} empty set {i : U | false}
{e} singleton set {i : U | i = e}
e1 ∪ e2 union {i : U | i ∈ e ∨ i ∈ e}
{e1, e2, ..., en} set extension {e1} ∪ {e2, ..., en}
e1 ∩ e2 intersection {i : e1 | i ∈ e2}
e1 \ e2 difference {i : e1 | i 6∈ e2}

4.2.4.5 Powersets

The axiom of powers asserts the existence of a powerset, which is the set of all subsets of a set. The set of all
finite subsets is a subset of the powerset. It is the smallest set containing the empty set and all singleton subsets
of e and closed under the operation of forming the union with singleton subsets of e. Their forms are given in
Table 9.

6 c©ISO/IEC 2002—All rights reserved

4 Metalanguages ISO/IEC 13568:2002(E)

Table 9 — Powerset in metalanguage

Notation Name Definition
P e set of all subsets {i : U | i ⊆ e}
F e set of all finite subsets {i1 : U | ∀ i2 : PP e | ∅ ∈ i2 ∧ (∀ i3 : i2 • ∀ i4 : e • i3 ∪ {i4} ∈ i2) • i1 ∈ i2}

4.2.5 Natural numbers

Natural numbers are not primitive in ZF set theory, but there are several well established ways of representing
them. The choice of coding is irrelevant here and so is not specified. There are notations to measure the cardinality
of a finite set, to define addition of natural numbers and to form the set of natural numbers between two stated
natural numbers, as given in Table 10.

Table 10 — Operations on natural numbers in metalanguage

Notation Definition
e1 + e2 sum of natural numbers e1 and e2

e cardinality of finite set e
e1 . . e2 set of natural numbers between e1 and e2 inclusive

4.2.6 Names

Names are needed for this International Standard. There are several ways of representing names in ZF set theory.
The choice of coding is irrelevant here and so is not specified. Only one operation is needed on names; it is an
infix operation with highest precedence, and is defined in Table 11.

Table 11 — Decorations of names in metalanguage

Notation Definition
i decor + the name that is like i but with the extra stroke +

4.2.7 Tuples and Cartesian products

Tuples and Cartesian products are not primitive in ZF set theory, but there are various ways in which they may
be represented within that theory, such as the well-known encoding given by Kuratowski [1]. The choice of coding
is irrelevant here and so is not specified. In this International Standard, the syntactic context of the metalanguage
expression denoting a value always determines whether or not that value is to be interpreted as an encoding of
a tuple. Therefore there is never any possibility of accidental confusion between the encoding used to represent
the tuple and any other value that is not a tuple.

In this mathematical metalanguage, tuples and Cartesian products with more than two components are interpreted
as nested binary tuples and products, unlike in Z.

The syntactic forms are given in Table 12.

The brackets delimiting a pair or tuple extension written with commas shall not be omitted—they are not grouping
parentheses.

4.2.8 Function comprehensions

Table 13 defines the notation for λ, which is a form of comprehension convenient when defining functions.

4.2.9 Relations

A relation is defined to be a set of pairs. There are several operations involving relations, which are given
equivalences in Table 14. A proposition about relations is given in Table 15.

c©ISO/IEC 2002—All rights reserved 7

ISO/IEC 13568:2002(E) 4 Metalanguages

Table 12 — Tuples and Cartesian products in metalanguage

Notation Name Definition
(e1, e2) pair
e1 7→ e2 maplet (e1, e2)
first e first(e1, e2) = e1

second e second(e1, e2) = e2

e1 × e2 {i1 : e1; i2 : e2 • (i1, i2)}
(e1, e2, ..., en) tuple extension (e1, (e2, ..., en)) where n > 2
e1 × e2 × ...× en Cartesian product e1 × (e2 × ...× en) where n > 2
e ↑ 1 e
e ↑ n iterated product e × ...× e where there are n ≥ 2 occurrences of e

Table 13 — Function comprehensions in metalanguage

Notation Definition
λ i : e1 • e2 {i : e1 • i 7→ e2}
λ i : e1 | p • e2 {i : e1 | p • i 7→ e2}
λ i1 : e1; ...; in : en • e {i1 : e1; ...; in : en • (i1, ..., in) 7→ e}
λ i1 : e1; ...; in : en | p • e {i1 : e1; ...; in : en | p • (i1, ..., in) 7→ e}

Table 14 — Relations in metalanguage

Notation Name Definition
id e identity function λ i : e • i
dom e domain {i : e • first i}
e1 C e2 domain restriction {i : e2 | first i ∈ e1}
e1 −C e2 domain subtraction {i : e2 | first i 6∈ e1}
e1(| e2 |) relational image {i : e1 | first i ∈ e2 • second i}
e1

o
9 e2 relational composition {i1 : e1; i2 : e2 | second i1 = first i2 • first i1 7→ second i2}

e1 ⊕ e2 relational overriding ((dom e2)−C e1) ∪ e2

Table 15 — Proposition about relations in metalanguage

Notation Name Definition
e1 ≈ e2 compatible relations (dom e2)C e1 = (dom e1)C e2

8 c©ISO/IEC 2002—All rights reserved

4 Metalanguages ISO/IEC 13568:2002(E)

4.2.10 Functions

A function is a particular form of relation, where each domain element has only one corresponding range element.
Table 16 shows the various forms of function that are identified, each being a set of functions.

Table 16 — Functions in metalanguage

Notation Name Definition
e1 7→ e2 functions {i1 : P (e1 × e2) | ∀ i2, i3 : i1 | first i2 = first i3 • second i2 = second i3}
e1 → e2 total functions {i : e1 7→ e2 | dom i = e1}
e1 7 7→ e2 finite functions {i : F (e1 × e2) | i ∈ e1 7→ e2}

4.2.10.1 Application

A function can be juxtaposed with an argument to produce a result, using the notation of Table 17. Metalanguage
notations introduced above that match the e1 e2 pattern, such as dom e, are not applications in this sense.

Table 17 — Application in metalanguage

Notation Name Definition
e1 e2 application if there exists a unique e3 such that e2 7→ e3 is in e1, then the

value of e1 e2 is e3, otherwise each e1 e2 has a fixed but unknown
value

4.2.11 Sequences

A sequence is a particular form of function, where the domain elements are all the natural numbers from 1 to the
length of the sequence.

Table 18 — Sequences in metalanguage

Notation Name Definition
〈e1,, en〉 sequence {1 7→ e1, ...,n 7→ en}

4.2.12 Disjointness

A labelled family of sets is disjoint when any distinct pair yields sets with no members in common.

Table 19 — Disjointness in metalanguage

Notation Name Definition
disjoint e disjointness ∀ e1, e2 : dom e | e1 6= e2 • e e1 ∩ e e2 = ∅

4.3 Transformation metalanguage

Transformation rules map parse trees of phrases to other parse trees. Each transformation rule is written in the
following form.

concrete phrase template =⇒ less concrete phrase template

c©ISO/IEC 2002—All rights reserved 9

ISO/IEC 13568:2002(E) 4 Metalanguages

EXAMPLE 1 The syntactic transformation rule for a schema definition paragraph, and an informal reading of it,
are as follows.

SCH i t END =⇒ AX [i == t] END

A schema definition paragraph is formed from a box token SCH, a name i, a schema text t, and an END token. An
equivalent axiomatic description paragraph is that which would be written textually as a box token AX, a [token, the
original name i, a == token, the original schema text t, a] token, and an END token.

EXAMPLE 2 The semantic transformation rule for a schema hiding expression, and an informal reading of it, are
as follows.

(e o
o P[σ]) \ (i, ..., in) =⇒ ∃ i : carrier (σ i); ...; in : carrier (σ in) • e

A schema with signature σ from which some names are hidden is semantically equivalent to the schema existential
quantification of the hidden names from the schema. Each name is declared with the set that is the carrier set of the
type of the name in the signature of the schema.

The phrase templates are patterns; they are not specific sentences and they are not written in the syntactic
metalanguage. These patterns are written in a notation based on the concrete and annotated syntaxes, with
metavariables appearing in place of syntactically well-formed phrases. The metavariables are defined in Tables
20 and 21 (the phrases being defined in clauses 7 and 8, and the operator words in 7.4.4). Where several phrases
of the same syntactic classes have to be distinguished, these metavariables are given distinct numeric subscripts.
The letters k , m , n , r are used as metavariables for such numeric subscripts. The patterns can be viewed either
as using the non-terminal symbols of the Z lexis with the -tok suffixes omitted from mathematical symbols, or as
using the mathematical rendering with the box tokens in place of paragraph outlines.

Table 20 — Metavariables for phrases

Symbol Definition
a denotes an ExpressionList phrase (a for list argument).
b denotes a list of digits within a NUMERAL token.
c denotes a digit within a NUMERAL token.
D denotes a Paragraph phrase.
d denotes a Declaration phrase.
e denotes an Expression phrase.
f denotes a free type’s NAME token.
g denotes an injection’s NAME token (g for ingection).
h denotes an element’s NAME token (h for helement).
i, j denote NAME tokens or DeclName or RefName phrases (i for identifier).
p denotes a Predicate phrase.
s denotes a Section phrase.
t denotes a SchemaText phrase (t for text).
u, v , w , x , y denote distinct names for new local declarations.
z denotes a Specification sentence.
τ denotes a Type phrase.
σ denotes a Signature phrase.
+ denotes a STROKE token.
∗ denotes a { STROKE } phrase.
... denotes elision of repetitions of surrounding phrases, the total number of

repetitions depending on syntax.

The applicability of a transformation rule can be guarded by a condition written above the =⇒ symbol. Local
definitions can be associated with a transformation rule by appending a where clause, in which later definitions
can refer to earlier definitions.

10 c©ISO/IEC 2002—All rights reserved

4 Metalanguages ISO/IEC 13568:2002(E)

Table 21 — Metavariables for operator words

Symbol Definition
el denotes an EL token.
elp denotes an ELP token.
er denotes an ER token.
ere denotes an ERE token.
erep denotes an EREP token.
erp denotes an ERP token.
es denotes an ES token.
ess denotes an ES token or SS token.
in denotes an I token.
ip denotes an IP token or ∈ token or = token.
ln denotes an L token.
lp denotes an LP token.
post denotes a POST token.
postp denotes a POSTP token.
pre denotes a PRE token.
prep denotes a PREP token.
sr denotes an SR token.
sre denotes an SRE token.
srep denotes an SREP token.
srp denotes an SRP token.
ss denotes an SS token.

The transformation rule metalanguage is used in defining characterisation rules, syntactic transformation rules,
type inference rules, and semantic transformation rules (clauses 9, 12, 13 and 14).

4.4 Type inference rule metalanguage

Each type inference rule is written in the following form.

type subsequents

type sequent
(side-condition)

where local -declaration
and ...

This can be read as: if the type subsequents are valid, and the side-condition is true, then the type sequent is
valid, in the context of the zero-or-more local-declarations. The side-condition is optional; if omitted, the type
inference rule is equivalent to one with a true side-condition.

The annotated syntax (see 10.2) establishes notation for writing types as Type phrases and for writing signatures
as Signature phrases. The o

o operator allows annotations such as types to be associated with other phrases.
Determining whether a type sequent is valid or not involves manipulation of types and signatures. This requires
viewing types and signatures as values, and having a mathematical notation to do the manipulation. Signatures
are viewed as functions from names to type values. Type is used to denote the set of type values as well as the set
of type phrases, the appropriate interpretation being distinguished by context of use. Similarly, NAME is also used
to denote a set of name values. These values all lie within the type universe. A type’s NAME has a corresponding
type value in the type universe whereas a type’s carrier set is in the semantic universe.

Type values are formed from just finite sets and ordered pairs, so the mathematical metalanguage introduced in
4.2 suffices for their manipulation.

Details of which names are in scope are kept in environments. The various kinds of environment are defined in

c©ISO/IEC 2002—All rights reserved 11

ISO/IEC 13568:2002(E) 4 Metalanguages

Table 22, and metavariables for environments are defined in Table 23.

Table 22 — Environments

Symbol Definition
TypeEnv denotes type environments, where TypeEnv == NAME 7 7→ Type. Type en-

vironments associate names with types. They are like signatures, but are
used in different contexts.

SectTypeEnv denotes section-type environments, where SectTypeEnv == NAME 7 7→
(NAME× Type). Section-type environments associate names of declarations
with the name of the ancestral section that originally declared the name
paired with its type.

SectEnv denotes section environments, where SectEnv == NAME 7 7→ SectTypeEnv.
Section environments associate section names with section-type environ-
ments.

Table 23 — Metavariables for environments

Symbol Definition
Σ denotes a type environment, Σ : TypeEnv.
Γ denotes a section-type environment, Γ : SectTypeEnv.
Λ denotes a section environment, Λ : SectEnv.

Variables over the type universe are defined in Table 24, and a relation on types is defined in Table 25.

Table 24 — Variables over type universe

Symbol Definition
α denotes a type, α : Type.
β denotes a signature, β : Signature, which may be a type environment.
γ denotes a section-type environment, γ : SectTypeEnv.
δ denotes a section environment, δ : SectEnv.

Table 25 — Type relations

Symbol Definition
generic type τ asserts that τ is a generic type.

Type sequents are written using a ` symbol superscripted with a mnemonic letter to distinguish the syntax of
the phrase appearing to its right (Table 26).

NOTE 1 These superscripts are the same as the superscripts used on the [[]] semantic brackets in the semantic
relations below (Table 29).

The annotated phrases to the right of ` in type sequents are phrase templates written using the same metavariables
as the syntactic transformation rules (Table 20).

12 c©ISO/IEC 2002—All rights reserved

4 Metalanguages ISO/IEC 13568:2002(E)

Table 26 — Type sequents

Symbol Definition
`Z z a type sequent asserting that specification z is well-typed.

Λ `S s o
o Γ a type sequent asserting that, in the context of section environment Λ,

section s has section-type environment Γ.

Σ `D D o
o σ a type sequent asserting that, in the context of type environment Σ, the

paragraph D has signature σ.

Σ `P p a type sequent asserting that, in the context of type environment Σ, the
predicate p is well-typed.

Σ `E e o
o τ a type sequent asserting that, in the context of type environment Σ, the

expression e has type τ.

EXAMPLE The type inference rule for a schema conjunction expression, and its informal reading, are as follows.

Σ `E e o
o τ Σ `E e o

o τ

Σ `E (e o
o τ) ∧ (e o

o τ) o
o τ

 τ = P[β]
τ = P[β]
β ≈ β
τ = P[β ∪ β]

In a schema conjunction expression e ∧ e, expressions e and e shall be schemas, and their signatures shall be
compatible. The type of the whole expression is that of the schema whose signature is the union of those of expressions
e and e.

NOTE 2 The metavariables β and β in this example denote syntactic phrases. These are mapped implicitly
to type values, so that the set union can be computed, and the resulting signature is implicitly mapped back to
a syntactic phrase. These mappings are not made explicit as they would make the type inference rules harder to
read, e.g. [[[[β]] ∪ [[β]]]].

This metalanguage is used in defining type inference rules (clause 13).

4.5 Semantic relation metalanguage

Most semantic relations are equations written in the following form.

[[phrase template]] = semantics

Where the definition is only partial, the equality notation is not appropriate, and instead a lower bound is specified
on the semantics.

semantics ⊆ [[µ e • e]]E

The phrase templates use the same metavariables as used by the syntactic transformation rules (Table 20).

Symbols concerned with the domains of the semantic definitions are listed in Tables 27 and 28.

The meaning of a phrase template is given by a semantic relation from the Z phrase in terms of operations of ZF
set theory on the semantic universe. There are different semantic relations for each syntactic notation, written
using the conventional [[]] semantic brackets, but here superscripted with a mnemonic letter to distinguish the
syntax of phrase appearing within them (Table 29).

NOTE The superscripts are the same as those used on the ` of type sequents in the type inference rules above
(Table 26).

c©ISO/IEC 2002—All rights reserved 13

ISO/IEC 13568:2002(E) 4 Metalanguages

Table 27 — Semantic universe

Symbol Definition
W denotes the world of semantic values for Z expressions that are not generic,

where W : PU.

Model denotes models, where Model == NAME 7 7→ U. Models associate names of
declarations with semantic values. They are applied only to names in their
domains, as guaranteed by well-typedness.

SectionModels denotes functions from sections’ names to their sets of models, where
SectionModels == NAME 7 7→ PModel .

Table 28 — Variables over semantic universe

Symbol Definition
M denotes a model, M : Model .
T denotes a section’s name and its set of models, T : SectionModels.
t denotes a binding semantic value, t : NAME 7 7→W.
u denotes a generic semantic value, u : U \W.
w , x , y denote non-generic semantic values, w : W; x : W; y : W.

Table 29 — Semantic relations

Symbol Definition
[[z]]Z denotes the meaning of specification z, where [[z]]Z ∈ SectionModels. The

meaning of a specification is the function from its sections’ names to their
sets of models.

[[s]]S denotes the meaning of section s, where [[s]]S ∈ SectionModels 7→
SectionModels. The meaning of a section is given by the extension of
a SectionModels function with an extra maplet corresponding to the given
section.

[[D]]D denotes the meaning of paragraph D, where [[D]]D ∈ Model ↔ Model .
The meaning of a paragraph relates a model to that model extended ac-
cording to that paragraph.

[[p]]P denotes the meaning of predicate p, where [[p]]P ∈ PModel . The meaning
of a predicate is the set of all models in which that predicate is true.

[[e]]E denotes the meaning of expression e, where [[e]]E ∈ Model → W. The
meaning of an expression is a function returning the semantic value of the
expression in the given model.

[[τ]]T denotes the meaning of type τ, where [[τ]]T ∈ Model 7→ P U. The meaning
of a type is the semantic value of its carrier set, as determined from the
given model.

14 c©ISO/IEC 2002—All rights reserved

5 Conformance ISO/IEC 13568:2002(E)

EXAMPLE The semantic relation for a conjunction predicate, and its informal reading, are as follows. The con-
junction predicate p ∧ p is true if and only if p and p are true.

[[p ∧ p]]P = [[p]]P ∩ [[p]]P

In terms of the semantic universe, it is true in those models in which both p and p are true, and is false otherwise.

Within the semantic relations, the idioms listed in Table 30 occur frequently.

Table 30 — Semantic idioms

Idiom Description
[[e]]EM denotes the value of expression e in model M

M ⊕ t denotes the model M giving semantic values for more global declarations
overridden by the binding t giving the semantic values of locally declared
names

Semantic relation metalanguage is used in defining semantic relations (clause 15).

5 Conformance

5.1 Phases of the definition

The definition of the Z notation is divided into a sequence of phases, as illustrated in Figure 1. Each arrow
represents a phase from a representation of a Z specification at its source to another representation of the Z
specification at its target. The phase is named at the left margin. Some phases detect errors in the specification;
these are shown drawn off to the right-hand side.

NOTE 1 Figure 1 shows the order in which the phases are applied, and where errors are detected; it does not show
information flows.

NOTE 2 The arrows are analogous to total and partial function arrows in the Z mathematical toolkit, but drawn
vertically.

5.2 Conformance requirements

5.2.1 Specification conformance

For a Z specification to conform to this International Standard, no errors shall be detected by any of the phases
shown in Figure 1. In words, for a Z specification to conform to this International Standard, its formal text shall
be valid mark-up of a sequence of Z characters, that can be lexed as a valid sequence of tokens, that can be parsed
as a sentence of the concrete syntax, and that is well-typed according to the type inference system.

NOTE The presence of sections that have no models does not affect the conformance of their specification.

5.2.2 Mark-up conformance

A mark-up for Z based on LATEX [10] conforms to this International Standard if and only if it follows the rules
given for LATEX mark-up in A.2.

A mark-up for Z used in e-mail correspondence conforms to this International Standard if and only if it follows
the rules given for e-mail mark-up in A.3.

Mark-up for Z based on any other mark-up language is permitted; it shall be possible to define a functional
mapping from that mark-up to sequences of Z characters.

The ISO/IEC 10646 [5][6] representation may be used directly.

c©ISO/IEC 2002—All rights reserved 15

ISO/IEC 13568:2002(E) 5 Conformance

source text

mark-up
?

mark-up error

sequence of Z characters

lexing
?

lexical error

sequence of tokens

parsing
?

syntax error

parse tree of concrete syntax sentence

characterising
?

characterised parse tree of concrete syntax sentence

syntactic transformation
?

parse tree of annotated syntax sentence

type inference
?

type error

fully annotated parse tree of annotated syntax sentence

semantic transformation
?

fully annotated parse tree of sentence of subset of annotated syntax

semantic relation
?

meaning in ZF set theory

Figure 1 — Phases of the definition

16 c©ISO/IEC 2002—All rights reserved

5 Conformance ISO/IEC 13568:2002(E)

5.2.3 Deductive system conformance

A Z deductive system conforms to this International Standard if and only if its rules are sound with respect to
the semantics, i.e. if both of the following conditions hold:

a) all of its axioms hold in all models of all Z specifications, i.e. for any axiom p,

[[p]]P = Model

b) all of its rules of inference have the property that the intersection of the sets of models of each of the premises
is contained in the model of the conclusion, i.e. for any rule of inference where p is deduced from p, ... pn,

[[p]]P ∩ ... ∩ [[pn]]P ⊆ [[p]]P

All constraints appearing before a conjecture in a specification may be used as premises in inferences about
that conjecture. The documentation of a Z deductive system should clarify whether or not it allows constraints
appearing after a conjecture in a specification to be used as premises in inferences about that conjecture.

The semantic relations assigning meanings to Z phrases are defined loosely by this International Standard, so
that there is a set of possible conforming semantic relations. A deductive system conforms if and only if its rules
are sound with respect to one or more of these semantic relations. The documentation of a Z deductive system
should indicate the semantic relations to which its rules are sound.

5.2.4 Mathematical toolkit conformance

A Z section whose name is the same as a section of the mathematical toolkit of annex B conforms to this
International Standard if and only if it defines the same set of models as that section of the mathematical toolkit.
A Z section whose name is prelude conforms to this International Standard if and only if it defines the same set
of models as the section in clause 11.

A mathematical toolkit conforms to this standard if it defines a conformant section called standard toolkit.

NOTE 1 The set of models defined by a section within a specification may be found by applying the meaning of
the specification to the section’s name.

NOTE 2 A conforming section of the toolkit may formulate its definitions differently from those in annex B.

NOTE 3 A conforming section of the toolkit may partition its definitions amongst parent sections that differ from
those in annex B.

NOTE 4 Alternative and additional toolkits are not precluded, but are required to have different section names to
avoid confusion.

NOTE 5 Some names are loosely defined, such as A, and may be further constrained by sections that use toolkit
sections, but not by toolkit sections themselves.

5.2.5 Support tool conformance

A strongly conforming Z support tool shall recognise at least one conforming mark-up, accepting all conforming Z
specifications presented to it, and rejecting all non-conforming Z specifications presented to it. A weakly conform-
ing Z support tool shall never accept a non-conforming Z specification, nor reject a conforming Z specification,
but it may state that it is unable to determine whether or not a Z specification conforms.

NOTE Strong conformance can be summarised as always being right, whereas weak conformance is never being
wrong.

EXAMPLE A tool would be weakly conformant if it were to announce its inability to determine the conformance
of a Z specification that used names longer than the tool could handle, but would be non-conformant if it silently
truncated long names.

Certain exceptions to general rules are anticipated and permitted in subsequent clauses, because of, for example,
implementation considerations or for backwards compatibility with pre-existing tools.

c©ISO/IEC 2002—All rights reserved 17

ISO/IEC 13568:2002(E) 6 Z characters

5.3 Structure of this document

The phases in the definition of the Z notation, and the representations of specifications manipulated by those
phases, as illustrated in Figure 1, are specified in the following clauses and annexes.

Annex A, Mark-ups, specifies two source text representations and corresponding mark-up phases for translating
source text to sequences of Z characters.

Clause 6 specifies the Z characters by their appearances and their names in ISO/IEC 10646.

Clause 7, Lexis, specifies tokens and the lexing phase that translates a sequence of Z characters to a sequence of
tokens.

Clause 8 specifies the grammar of the concrete syntax, and hence abstractly specifies the parsing phase that
translates a sequence of tokens to a parse tree of a concrete syntax sentence.

Clause 9 specifies the characterising phase, during which characteristic tuples are made explicit in the parse tree
of a concrete syntax sentence.

Clause 10 specifies the grammar of the annotated syntax, defining the target language for the syntactic transfor-
mation phase.

Clause 11 specifies the prelude section, providing the initial environment of definitions.

Clause 12 specifies the syntactic transformation phase that translates a parse tree of a concrete syntax sentence
to a parse tree of an equivalent annotated syntax sentence.

Clause 13 specifies the type inference phase, during which type annotations are added to the parse tree of the
annotated syntax sentence, and reference expressions that refer to generic definitions are translated to generic
instantiation expressions.

Clause 14 specifies the semantic transformation phase, during which some annotated parse trees are translated
to equivalent other annotated parse trees.

Clause 15 specifies the semantic relation between a sentence of the remaining annotated syntax and its meaning
in ZF set theory.

Annex C duplicates those parts of the definition that fit into an organisation by concrete syntax production.

6 Z characters

6.1 Introduction

A Z character is the smallest unit of information in Z. Z characters are used to build tokens (clause 7), which are
in turn the units of information in the concrete syntax (clause 8). The Z characters are defined by reference to
ISO/IEC 10646-1 [5] and ISO/IEC 10646-2 [6]: the appearance, code position and name of each Z character are
listed.

Many Z characters are not present in the standard 7-bit ASCII encoding [4]. It is possible to represent Z
characters in ASCII, by defining a mark-up, where several ASCII characters are used together to represent
a single Z character. This International Standard defines some ASCII mark-ups in annex A by relation to the
ISO/IEC 10646 representation (henceforth called UCS) defined here. Other mark-ups of Z characters can similarly
be defined by relation to the UCS representation.

18 c©ISO/IEC 2002—All rights reserved

6 Z characters ISO/IEC 13568:2002(E)

6.2 Formal definition of Z characters

Copyright notice
The reproduction of this clause is permitted on the understanding that this material is public

domain, and on the condition that this International Standard is referenced as the source document.
With the exception of clauses 6.2, 7.2, 8.2, 11 and annex B, all other parts of the text are subject to
the usual copyright rules stated on page ii of this International Standard.

ZCHAR = DIGIT | LETTER | SPECIAL | SYMBOL ;

DIGIT = DECIMAL
| ? other UCS chars with Number property but Number, Decimal Digit (as supported) ?
;

DECIMAL = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’
| ? any other UCS characters with Number, Decimal Digit property (as supported) ?
;

LETTER = LATIN | GREEK | OTHERLETTER
| ? any characters of the mathematical toolkit with letter property (as supported) ?
| ? any other UCS characters with letter property (as supported) ?
;

LATIN = ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’ | ’H ’ | ’I ’
| ’J’ | ’K’ | ’L’ | ’M ’ | ’N ’ | ’O’ | ’P’ | ’Q’ | ’R’
| ’S’ | ’T’ | ’U ’ | ’V ’ | ’W ’ | ’X ’ | ’Y ’ | ’Z’
| ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f ’ | ’g’ | ’h’ | ’i’
| ’j’ | ’k’ | ’l’ | ’m’ | ’n’ | ’o’ | ’p’ | ’q’ | ’r’
| ’s’ | ’t’ | ’u’ | ’v’ | ’w’ | ’x’ | ’y’ | ’z’
;

GREEK = ’∆’ | ’Ξ’ | ’θ’ | ’λ’ | ’µ’ ;

OTHERLETTER = ’A’ | ’N’ | ’P’ ;

SPECIAL = STROKECHAR | WORDGLUE | BRACKET | BOXCHAR | NLCHAR | SPACE ;

STROKECHAR = ’′’ | ’!’ | ’?’ ;

WORDGLUE = ’↗’ | ’↙’ | ’↘’ | ’↖’ | ’ ’ ;

BRACKET = ’(’ | ’)’ | ’[’ | ’]’ | ’{’ | ’}’ | ’〈|’ | ’|〉’ | ’〈〈’ | ’〉〉’ ;

BOXCHAR = ZEDCHAR | AXCHAR | SCHCHAR | GENCHAR | ENDCHAR ;

SYMBOL = ’|’ | ’&’ | ’`’ | ’∧’ | ’∨’ | ’⇒’ | ’⇔’ | ’¬’ | ’∀’ | ’∃’
| ’×’ | ’/’ | ’=’ | ’∈’ | ’:’ | ’; ’ | ’,’ | ’.’ | ’•’
| ’\’ | ’�’ | ’o

9’ | ’>>’ | ’+’
| ? any characters of the mathematical toolkit with neither letter or

number property (as supported) ?
| ? any other UCS characters with neither letter or

number property and that are not in SPECIAL(as supported) ?
;

c©ISO/IEC 2002—All rights reserved 19

ISO/IEC 13568:2002(E) 6 Z characters

6.3 Additional restrictions and notes

The word supported means available for use in presenting a specification.

The characters enumerated in the formal definition are those used by the Z core language; they shall be supported.
If the mathematical toolkit is supported, then its characters shall be supported. The “other UCS characters” may
also be supported, extending DIGIT, DECIMAL, LETTER or SYMBOL according to their property, but not extending
SPECIAL. Use of characters that are absent from UCS is permitted, but there is no standard way of distinguishing
which of DIGIT, DECIMAL, LETTER or SYMBOL (not SPECIAL) they extend, and specifications using them might not
be interchangeable between tools.

NOTE 1 SPACE is a Z character that serves to separate two sequences of Z characters that would otherwise be
mis-lexed as a single token.

NOTE 2 BOXCHAR characters correspond to Z’s distinctive boxes around paragraphs. The NLCHAR character is used
to mark a hard newline (see 7.5).

6.4 Z character representations

6.4.1 Introduction

The following tables show the Z characters in their mathematical representation. (Other representations are given
in annex A.) The columns give:

Math: The representation for rendering the character on a high resolution device, such as a bit-mapped
screen, or on paper (either hand-written, or printed).

Code position: The encoding of the Z character in UCS.

Character name: The name for the character in UCS.

NOTE The code position column is included to assist location of the characters by users; it is not necessary for
definition of the characters.

6.4.2 Decimal digit characters

Math Code position Character name

0 0000 0030 DIGIT ZERO
...

...
...

9 0000 0039 DIGIT NINE

For each DECIMAL character, UCS defines a corresponding decimal digit value. This is used in 7.3.

6.4.3 Letter characters

6.4.3.1 Latin alphabet characters

Math Code position Character name

A 0000 0041 LATIN CAPITAL LETTER A
...

...
...

Z 0000 005A LATIN CAPITAL LETTER Z
a 0000 0061 LATIN SMALL LETTER A
...

...
...

z 0000 007A LATIN SMALL LETTER Z

20 c©ISO/IEC 2002—All rights reserved

6 Z characters ISO/IEC 13568:2002(E)

6.4.3.2 Greek alphabet characters

The Greek alphabet characters used by the Z core language are those listed here.

Math Code position Character name

∆ 0000 0394 GREEK CAPITAL LETTER DELTA
Ξ 0000 039E GREEK CAPITAL LETTER XI
θ 0000 03B8 GREEK SMALL LETTER THETA
λ 0000 03BB GREEK SMALL LETTER LAMBDA
µ 0000 03BC GREEK SMALL LETTER MU

6.4.3.3 Other Z core language letter characters

The other Z core language characters with UCS letter property are those of the prelude (clause 11), as listed here.

Math Code position Character name

A 0001 D538 MATHEMATICAL DOUBLE-STRUCK CAPITAL A
N 0000 2115 DOUBLE-STRUCK CAPITAL N
P 0000 2119 DOUBLE-STRUCK CAPITAL P

6.4.4 Special characters

6.4.4.1 Stroke characters
Math Code position Character name

′ 0000 02B9 MODIFIER LETTER PRIME
! 0000 0021 EXCLAMATION MARK
? 0000 003F QUESTION MARK

6.4.4.2 Word glue characters

The characters ’↗’, ’↙’, ’↘’, and ’↖’ may be presented as in-line literals, or they may indicate a rais-
ing/lowering of the text, and possible size change. Such rendering details are not defined here.

Math Code position Character name

↗ 0000 2197 NORTH EAST ARROW
↙ 0000 2199 SOUTH WEST ARROW
↘ 0000 2198 SOUTH EAST ARROW
↖ 0000 2196 NORTH WEST ARROW

0000 005F LOW LINE

6.4.4.3 Bracket characters
Math Code position Character name

(0000 0028 LEFT PARENTHESIS
) 0000 0029 RIGHT PARENTHESIS
[0000 005B LEFT SQUARE BRACKET
] 0000 005D RIGHT SQUARE BRACKET
{ 0000 007B LEFT CURLY BRACKET
} 0000 007D RIGHT CURLY BRACKET
〈| 0000 2989 Z NOTATION LEFT BINDING BRACKET
|〉 0000 298A Z NOTATION RIGHT BINDING BRACKET
〈〈 0000 300A LEFT DOUBLE ANGLE BRACKET
〉〉 0000 300B RIGHT DOUBLE ANGLE BRACKET

c©ISO/IEC 2002—All rights reserved 21

ISO/IEC 13568:2002(E) 6 Z characters

6.4.4.4 Box characters

Box characters are assembled to form box tokens (see 7.2), which in turn correspond to boxes around paragraphs
(see 8.5). The simple renderings of the characters are suggestive of the boxes around paragraphs. The ENDCHAR
character is used to mark the end of a Paragraph.

NOTE These box characters are not intended to be used for rendering the boxes around paragraphs.

Z character Simple rendering Code position Character name

ZEDCHAR | 0000 2028 LINE SEPARATOR
AXCHAR | 0000 2577 BOX DRAWINGS LIGHT DOWN
SCHCHAR p 0000 250C BOX DRAWINGS LIGHT DOWN AND RIGHT
GENCHAR = 0000 2550 BOX DRAWINGS DOUBLE HORIZONTAL
ENDCHAR (new line) 0000 2029 PARAGRAPH SEPARATOR

6.4.4.5 Other SPECIAL characters
Z character Simple rendering Code position Character name

NLCHAR (new line) 0000 000A LINE FEED
SPACE (space) 0000 0020 SPACE

6.4.5 Symbol characters except mathematical toolkit characters

Math Code position Character name

| 0000 007C VERTICAL LINE
& 0000 0026 AMPERSAND
` 0000 22A2 RIGHT TACK
∧ 0000 2227 LOGICAL AND
∨ 0000 2228 LOGICAL OR
⇒ 0000 21D2 RIGHTWARDS DOUBLE ARROW
⇔ 0000 21D4 LEFT RIGHT DOUBLE ARROW
¬ 0000 00AC NOT SIGN
∀ 0000 2200 FOR ALL
∃ 0000 2203 THERE EXISTS
× 0000 00D7 MULTIPLICATION SIGN
/ 0000 002F SOLIDUS
= 0000 003D EQUALS SIGN
∈ 0000 2208 ELEMENT OF
: 0000 003A COLON
; 0000 003B SEMICOLON
, 0000 002C COMMA
. 0000 002E FULL STOP
• 0000 2981 Z NOTATION SPOT
\ 0000 29F9 BIG REVERSE SOLIDUS
� 0000 2A21 Z NOTATION SCHEMA PROJECTION
o
9 0000 2A1F Z NOTATION SCHEMA COMPOSITION
>> 0000 2A20 Z NOTATION SCHEMA PIPING
+ 0000 002B PLUS SIGN

22 c©ISO/IEC 2002—All rights reserved

6 Z characters ISO/IEC 13568:2002(E)

6.4.6 Mathematical toolkit characters

The mathematical toolkit (annex B) need not be supported by an implementation. If it is supported, it shall use
the representations given here.

Mathematical toolkit names that use only Z core language characters, or combinations of Z characters defined
here, are not themselves listed here.

6.4.6.1 Section set toolkit
Math Code position Character name

↔ 0000 2194 LEFT RIGHT ARROW
→ 0000 2192 RIGHTWARDS ARROW
6= 0000 2260 NOT EQUAL TO
6∈ 0000 2209 NOT AN ELEMENT OF
∅ 0000 2205 EMPTY SET
⊆ 0000 2286 SUBSET OF OR EQUAL TO
⊂ 0000 2282 SUBSET OF
∪ 0000 222A UNION
∩ 0000 2229 INTERSECTION
\ 0000 005C REVERSE SOLIDUS
	 0000 2296 CIRCLED MINUS⋃

0000 22C3 N-ARY UNION⋂
0000 22C2 N-ARY INTERSECTION

F 0001 D53D MATHEMATICAL DOUBLE-STRUCK CAPITAL F

6.4.6.2 Section relation toolkit
Math Code position Character name

7→ 0000 21A6 RIGHTWARDS ARROW FROM BAR
o
9 0000 2A3E Z NOTATION RELATIONAL COMPOSITION
◦ 0000 2218 RING OPERATOR
C 0000 25C1 WHITE LEFT-POINTING TRIANGLE
B 0000 25B7 WHITE RIGHT-POINTING TRIANGLE
−C 0000 2A64 Z NOTATION DOMAIN ANTIRESTRICTION
−B 0000 2A65 Z NOTATION RANGE ANTIRESTRICTION
∼ 0000 223C TILDE OPERATOR
(| 0000 2987 Z NOTATION LEFT IMAGE BRACKET
|) 0000 2988 Z NOTATION RIGHT IMAGE BRACKET
⊕ 0000 2295 CIRCLED PLUS

6.4.6.3 Section function toolkit
Math Code position Character name

7→ 0000 21F8 RIGHTWARDS ARROW WITH VERTICAL STROKE
7� 0000 2914 RIGHTWARDS ARROW WITH TAIL WITH VERTICAL STROKE
� 0000 21A3 RIGHTWARDS ARROW WITH TAIL
7→→ 0000 2900 RIGHTWARDS TWO-HEADED ARROW WITH VERTICAL STROKE
→→ 0000 21A0 RIGHTWARDS TWO-HEADED ARROW
�→ 0000 2916 RIGHTWARDS TWO-HEADED ARROW WITH TAIL
7 7→ 0000 21FB RIGHTWARDS ARROW WITH DOUBLE VERTICAL STROKE
7 7� 0000 2915 RIGHTWARDS ARROW WITH TAIL WITH DOUBLE VERTICAL STROKE

c©ISO/IEC 2002—All rights reserved 23

ISO/IEC 13568:2002(E) 7 Lexis

6.4.6.4 Section number toolkit
Math Code position Character name

Z 0000 2124 DOUBLE-STRUCK CAPITAL Z
- 0000 002D HYPHEN-MINUS
− 0000 2212 MINUS SIGN
≤ 0000 2264 LESS-THAN OR EQUAL TO
< 0000 003C LESS-THAN SIGN
≥ 0000 2265 GREATER-THAN OR EQUAL TO
> 0000 003E GREATER-THAN SIGN
∗ 0000 002A ASTERISK

6.4.6.5 Section sequence toolkit

Math Code position Character name

0000 0023 NUMBER SIGN
〈 0000 3008 LEFT ANGLE BRACKET
〉 0000 3009 RIGHT ANGLE BRACKET
a 0000 2040 CHARACTER TIE
� 0000 21BF UPWARDS HARPOON WITH BARB LEFTWARDS
� 0000 21BE UPWARDS HARPOON WITH BARB RIGHTWARDS

6.4.7 Renderings of Z characters

Renderings of Z characters are called glyphs (following the terminology of UCS). The glyphs used for Z characters
are device-dependent: a rendering of a Z character on a screen is typically different from its rendering on a piece
of paper.

A Z character may also be rendered using different glyphs at different places in a specification, for reasons of
emphasis or aesthetics, but such different glyphs all represent the same Z character. For example, ‘d ’, ‘d’, ‘d’ and
‘d’ are all the same Z character. For historical reasons, the following similar-looking glyphs represent different Z
characters.

• Schema composition ‘o9’ and the mathematical toolkit character relational composition ‘o9’ are different Z
characters.

• Schema projection ‘�’ and the mathematical toolkit character filter ‘�’ are different Z characters.

• Schema hiding ‘\’ and the mathematical toolkit character set minus ‘\’ are different Z characters.

7 Lexis

7.1 Introduction

The lexis specifies a function from sequences of Z characters to sequences of tokens. The domain of the function
involves all the Z characters of clause 6. The range of the function involves all the tokens used in clause 8. The
function is partial: sequences of Z characters that do not conform to the lexis are excluded from consideration at
this stage. In each association of a sequence of Z characters with a token, the sequence of Z characters is called
the spelling of the token.

The lexis is composed of two parts: a context-free part followed by a context-sensitive part. The former translates
the stream of Z characters into a stream of DECORWORDs and tokens. The latter classifies each DECORWORD as being
a keyword, an operator token, or a NAME token, taking into account its spelling and the lexical scopes of the
operators (see 7.4.4).

24 c©ISO/IEC 2002—All rights reserved

7 Lexis ISO/IEC 13568:2002(E)

7.2 Formal definition of context-free lexis

Copyright notice
The reproduction of this clause is permitted on the understanding that this material is public

domain, and on the condition that this International Standard is referenced as the source document.
With the exception of clauses 6.2, 7.2, 8.2, 11 and annex B, all other parts of the text are subject to
the usual copyright rules stated on page ii of this International Standard.

TOKENSTREAM = { SPACE } , { TOKEN , { SPACE } } ;

TOKEN = DECORWORD | NUMERAL | STROKE
| (-tok |)-tok | [-tok |]-tok | {-tok | }-tok | 〈| | |〉 | 〈〈 | 〉〉
| ZED | AX | GENAX | SCH | GENSCH | END | NL
;

DECORWORD = WORD , { STROKE } ;

WORD = WORDPART , { WORDPART }
| (LETTER | (DIGIT — DECIMAL)) , ALPHASTR , { WORDPART }
| SYMBOL , SYMBOLSTR , { WORDPART }
;

WORDPART = WORDGLUE , (ALPHASTR | SYMBOLSTR) ;

ALPHASTR = { LETTER | DIGIT } ;

SYMBOLSTR = { SYMBOL } ;

NUMERAL = NUMERAL , DECIMAL
| DECIMAL
;

STROKE = STROKECHAR
| ’↘’ , DECIMAL , ’↖’
;

(-tok = ’(’ ;
)-tok = ’)’ ;
[-tok = ’[’ ;
]-tok = ’]’ ;
{-tok = ’{’ ;
}-tok = ’}’ ;
〈| = ’〈|’ ;
|〉 = ’|〉’ ;
〈〈 = ’〈〈’ ;
〉〉 = ’〉〉’ ;

ZED = ZEDCHAR ;
AX = AXCHAR ;
SCH = SCHCHAR ;
GENAX = AXCHAR , GENCHAR ;
GENSCH = SCHCHAR , GENCHAR ;
END = ENDCHAR ;
NL = NLCHAR ;

c©ISO/IEC 2002—All rights reserved 25

ISO/IEC 13568:2002(E) 7 Lexis

7.3 Additional lexical restrictions, notes and examples

Words are formed from alphanumeric and symbolic parts.

EXAMPLE 1 The following strings of Z characters are single DECORWORDs: ‘&+=’, ‘x + y ’, ‘x+y ’, ‘x+y ’, ‘x+
+y ’.

However, ‘x+y ’ comprises the three DECORWORDs ‘x ’, ‘+’ and ‘y ’.

EXAMPLE 2 The following strings of Z characters are single DECORWORDs: ‘λS ’, ‘∆S ’, ‘∃×’, ‘∃ X ’, ‘∃X ’. However,
‘∃X ’ is the keyword token ‘∃’, followed by the DECORWORD ‘X ’.

EXAMPLE 3 The following strings of Z characters are single DECORWORDs: ‘×:∈’, ‘x : e’, ‘x :e ’. However, ‘x :e’ is the
word ‘x ’, followed by the keyword token ‘:’, followed by the DECORWORD ‘e’.

SPACE is not itself lexed as part of any token. It can be used freely between tokens. The cases where its use is
necessary are: between two WORDs, which would otherwise be lexed as a single WORD; between an alphabetic WORD
and a NUMERAL, which would otherwise be lexed as a single WORD; between a DECORWORD and a STROKE, which
would otherwise be lexed as a single DECORWORD; and between two consecutive NUMERALs, which would otherwise
be lexed as a single NUMERAL.

EXAMPLE 4 abc is the DECORWORD ‘abc’.
a bc is the DECORWORD ‘a’ followed by the DECORWORD ‘bc’.
a12 is the DECORWORD ‘a12’.
a 12 is the DECORWORD ‘a’ followed by the NUMERAL ‘12’.
x ! is the DECORWORD comprising the WORD ‘x ’ followed by the STROKE ‘!’.
x ! is the DECORWORD ‘x ’ followed by the STROKE ‘!’.
x ! ! is the DECORWORD ‘x !’ followed by the STROKE ‘!’.

The lexis allows a WORD to include subscript digits; it also allows a DECORWORD to be decorated with subscript
decimal digits. Trailing subscript decimal digits shall be lexed as strokes, not as part of a WORD.

EXAMPLE 5 xa 1 is a DECORWORD comprising the WORD ‘xa ’ and the STROKE ‘1’.
xa? is a DECORWORD comprising the WORD ‘xa ’ and the STROKE ‘?’.
x1a is a DECORWORD comprising the WORD ‘x1a ’ and no strokes.
ab3 is a DECORWORD comprising the WORD ‘ab3 ’ and no strokes.

A multi-digit last WORDPART enclosed in a ↘ . . .↖ pair is deprecated, because of the visual ambiguity with
multiple STROKE subscript digits.

Throughout subsequent phases of this International Standard, NUMERALs are considered to comprise only the
decimal digits enumerated in 6.4.2. Any other decimal digit in a NUMERAL is transformed to the enumerated
decimal digit that has the same decimal digit value as defined by UCS.

EXAMPLE MATHEMATICAL DOUBLE-STRUCK DIGIT FIVE, code position 0001 D7DD, has decimal digit
value 5 and so, whenever it appears in a NUMERAL, is transformed to DIGIT FIVE, code position 0000 0035.

NOTE 1 Although a parser does not need to know the spelling of particular instances of DECORWORD, NUMERAL,
STROKE, etc tokens, subsequent phases of processing do. For example, references to undeclared names are excluded
by type inference rules, and the values of numerals may be determined from the values of their decimal digits. The
relation between instances of tokens and spellings is not explicitly formalized here. The relation between instances
of NUMERALs and their values is formalized for those used as number literal expressions (see 12.2.6.9), because the
semantic values of number literal expressions appear in models. The relation between other instances of NUMERALs
(those used in tuple selection expressions and those used as operator precedences) and their values is not formalised;
these values accord with the usual decimal convention.

Tools may impose restrictions on the forms of names. Section names that are entirely ASCII, alphanumeric,
capitalized and short are the most likely to be portable between tools.

26 c©ISO/IEC 2002—All rights reserved

7 Lexis ISO/IEC 13568:2002(E)

7.4 Context-sensitive lexis

7.4.1 Introduction

The context-sensitive part of lexis maps each DECORWORD to either a keyword token, an operator token, or a NAME
token. It also strips all SPACEs from the token stream, and forwards all other tokens unchanged.

If a DECORWORD’s spelling is exactly that of a keyword, the DECORWORD is mapped to the corresponding keyword
token. Otherwise, if the DECORWORD’s WORD part’s spelling is that of an operator word, the DECORWORD is mapped
to the relevant operator token. Otherwise, the DECORWORD is mapped to a NAME token.

In the case of a NAME token, for every ’↘’ WORDGLUE character in its WORD part, there shall be a paired following
’↖’ WORDGLUE character, for every ’↗’ WORDGLUE character in its WORD part, there shall be a paired following
’↙’ WORDGLUE character, and these shall occur only in nested pairs.

NOTE 1 Operators have a similar restriction applied to the whole operator name (see 12.2.8), not to the individual
words within the operator.

The keywords are as listed in the following tables. No other spellings give rise to keyword tokens. The columns
give:

Spelling: The sequence of Z characters representing the rendering of the token on a high resolution device,
such as a bit-mapped screen, or on paper (either hand-written, or printed).

Token: The token used for that keyword in the concrete syntax.

Token name: A suggested form for reading the keyword out loud, suitable for use in reviews, or for dis-
cussing specifications over the telephone. In the following, an English language form is given; for other
natural languages, other forms may be defined.

NOTE 2 Even where a keyword consists of a single Z character, the token name tends to reflect the keyword’s
function rather than the form of the Z character.

7.4.2 Alphabetic keywords

Spelling Token Token name

else else else
false false false
function function function
generic generic generic
if if if
leftassoc leftassoc left [associative]
let let let
P P powerset
parents parents parents
pre pre pre[condition]
relation relation relation
rightassoc rightassoc right [associative]
section section section
then then then
true true true

c©ISO/IEC 2002—All rights reserved 27

ISO/IEC 13568:2002(E) 7 Lexis

7.4.3 Symbolic keywords

Spelling Token Token name

: : colon
== == define equal
, ,-tok comma
::= ::= free equals
| |-tok bar
& & and also [free types]
\ \ hide
/ / rename
. . select | dot
; ; -tok semi[colon]

arg[ument]
, , , , list arg[ument]
= =-tok equals

EXAMPLE 1 = is recognised as the keyword token =-tok; := is recognised as a NAME token; ::= is recognised as the
keyword token.

Spelling Token Token name

`? `? conjecture
∀ ∀ for all
• • spot
∃ ∃ exists
∃1 ∃1 unique exists
⇔ ⇔ equivalent | if and only if
⇒ ⇒ implies
∨ ∨ or
∧ ∧ and
¬ ¬ not
∈ ∈ in | member of | element of
� � project
× × cross
λ λ lambda
µ µ mu
θ θ theta
o
9

o
9 schema compose

>> >> schema pipe

EXAMPLE 2 ∃ and ∃1 (‘∃’, ‘↘’, ‘1’, ‘↖’) are recognised as keyword tokens; ∃0 (‘∃’, ‘↘’, ‘0’, ‘↖’) is recognised as
a NAME token.

EXAMPLE 3 λ is recognised as the keyword token; λx is recognised as a NAME token; λ x is recognised as the
keyword token followed by a NAME token.

7.4.4 User-defined operators

Each operator template creates additional keyword-like associations between WORDs and operator tokens. The
scope of these associations is the whole of the section in which the operator template appears (not just from
the operator template onwards), as well as all sections of which that section is an ancestor, excluding section
headers.

28 c©ISO/IEC 2002—All rights reserved

7 Lexis ISO/IEC 13568:2002(E)

NOTE The set of active associations is always a function. This International Standard does not specify how that
function is determined: operator template paragraphs provide the information, yet in their concrete syntax it is
assumed that the function is already known.

The appropriate token for an operator word is as follows.

PREP prefix unary relation
PRE prefix unary function or generic
POSTP postfix unary relation
POST postfix unary function or generic
IP infix binary relation
I infix binary function or generic
LP left bracket of non-unary relation
L left bracket of non-unary function or generic
ELP first word preceded by expression of non-unary relation
EL first word preceded by expression of non-unary function or generic
ERP right bracket preceded by expression of non-unary relation
ER right bracket preceded by expression of non-unary function or generic
SRP right bracket preceded by list argument of non-unary relation
SR right bracket preceded by list argument of non-unary function or generic
EREP last word followed by expression and preceded by expression of tertiary or higher relation
ERE last word followed by expression and preceded by expression of tertiary or higher function or generic
SREP last word followed by expression and preceded by list argument of tertiary or higher relation
SRE last word followed by expression and preceded by list argument of tertiary or higher function or generic
ES middle word preceded by expression of non-unary operator
SS middle word preceded by list argument of non-unary operator

EXAMPLE 1 The operator template paragraph for the (+) operator adds one entry to the mapping.

Spelling Token

+ I

EXAMPLE 2 The operator template paragraph for the ((| |)) operator adds two entries to the mapping.

Spelling Token

(| EL

|) ER

EXAMPLE 3 The operator template paragraph for the (disjoint) operator adds one entry to the mapping.

Spelling Token

disjoint PREP

EXAMPLE 4 The operator template paragraph for the (〈 〉) operator adds two entries to the mapping.

Spelling Token

〈 L

〉 SR

c©ISO/IEC 2002—All rights reserved 29

ISO/IEC 13568:2002(E) 8 Concrete syntax

7.5 Newlines

The Z character NLCHAR is lexed either as a token separator (like the SPACE character) or as the token NL,
depending on its context. A soft newline is a NLCHAR that is lexed as a token separator. A hard newline is a
NLCHAR that is lexed as a NL token.

Tokens are assigned to a newline category, namely BOTH, AFTER, BEFORE or NEITHER, based on whether
that token could start or end a Z phrase.

• BOTH: newlines are soft before and after the token, because it is infix, something else has to appear before
it and after it.

else function generic leftassoc parents relation rightassoc section then
::= |-tok 〈〈 〉〉 & `? , , ∧ ∨ ⇒ ⇔ × / =-tok ∈ == : ; -tok ,-tok . • \ � o

9 >>
I IP EL ELP ERE EREP ES SS SRE SREP

All newlines are soft outside of a DeclPart or a Predicate.

NOTE Tokens that cannot appear in these contexts are in category BOTH. This includes the box tokens.
Newlines at the very beginning or end of a specification are soft.

• AFTER: newlines are soft after the token, because it is prefix, something else has to appear after it.

if let pre
[−tok ¬ ∀ ∃ ∃1 P (−tok {−tok 〈| λ µ θ
PRE PREP L LP

• BEFORE: newlines are soft before the token, because it is postfix, something else has to appear before it.

]−tok)−tok }−tok |〉
POST POSTP ER ERP SR SRP

• NEITHER: no newlines are soft, because such a token is nofix, nothing else need appear before or after it.

false true
NAME NUMERAL STROKE

For each NLCHAR, the newline categories of the closest token generated from the preceding Z characters and the
token generated from the immediately following Z characters are examined. If either token allows the newline to
be soft in that position, it is soft, otherwise it is hard (and hence recognised as a NL token).

The operator template paragraph allows the definition of various mixfix names (see 7.4.4), which are placed in the
appropriate newline category. Other (ordinary) user declared names are nofix, and so are placed in NEITHER.

Consecutive NLCHARs are treated the same as a single NLCHAR.

8 Concrete syntax

8.1 Introduction

The concrete syntax defines the syntax of the Z language: every sentence of the Z language is recognised by
this syntax, and all sentences recognised by this syntax are sentences of the Z language. The concrete syntax
is written in terms of the tokens generated by the lexis (clause 7). There are no terminal symbols within this
syntax, so as to establish a formal connection with that lexis. Sequences of tokens that are not recognised by this
syntax are not sentences of the Z language and are thus excluded from consideration by subsequent phases and
so are not given a semantics by this International Standard.

30 c©ISO/IEC 2002—All rights reserved

8 Concrete syntax ISO/IEC 13568:2002(E)

A parser conforming to this concrete syntax converts a concrete sentence to a parse tree.

The non-terminal symbols of the concrete syntax that are written as mathematical symbols or are entirely
CAPITALIZED or Roman are Z tokens defined in the lexis (claue 7). The other non-terminal symbols are written
in MixedCase and are defined within the concrete syntax.

8.2 Formal definition of concrete syntax

Copyright notice
The reproduction of this clause is permitted on the understanding that this material is public

domain, and on the condition that this International Standard is referenced as the source document.
With the exception of clauses 6.2, 7.2, 8.2, 11 and annex B, all other parts of the text are subject to
the usual copyright rules stated on page ii of this International Standard.

Specification = { Section } (* sectioned specification *)
| { Paragraph } (* anonymous specification *)
;

Section = ZED , section , NAME , parents , [NAME , { ,-tok , NAME }] , END ,
{ Paragraph } (* inheriting section *)

| ZED , section , NAME , END , { Paragraph } (* base section *)
;

Paragraph = ZED , [-tok , NAME , { ,-tok , NAME } ,]-tok , END (* given types *)
| AX , SchemaText , END (* axiomatic description *)
| SCH , NAME , SchemaText , END (* schema definition *)
| GENAX , [-tok , Formals ,]-tok , SchemaText , END

(* generic axiomatic description *)
| GENSCH , NAME , [-tok , Formals ,]-tok , SchemaText , END

(* generic schema definition *)
| ZED , DeclName , == , Expression , END (* horizontal definition *)
| ZED , NAME , [-tok , Formals ,]-tok , == , Expression , END

(* generic horizontal definition *)
| ZED , GenName , == , Expression , END (* generic operator definition *)
| ZED , Freetype , { & , Freetype } , END (* free types *)
| ZED , `? , Predicate , END (* conjecture *)
| ZED , [-tok , Formals ,]-tok , `? , Predicate , END (* generic conjecture *)
| ZED , OperatorTemplate , END (* operator template *)
;

Freetype = NAME , ::= , Branch , { |-tok , Branch } ; (* free type *)

Branch = DeclName , [〈〈 , Expression , 〉〉] ; (* element or injection *)

Formals = NAME , { ,-tok , NAME } ; (* generic parameters *)

Predicate = Predicate , NL , Predicate (* newline conjunction *)
| Predicate , ; -tok , Predicate (* semicolon conjunction *)
| ∀ , SchemaText , • , Predicate (* universal quantification *)
| ∃ , SchemaText , • , Predicate (* existential quantification *)
| ∃1 , SchemaText , • , Predicate (* unique existential quantification *)
| Predicate , ⇔ , Predicate (* equivalence *)
| Predicate , ⇒ , Predicate (* implication *)
| Predicate , ∨ , Predicate (* disjunction *)
| Predicate , ∧ , Predicate (* conjunction *)
| ¬ , Predicate (* negation *)

c©ISO/IEC 2002—All rights reserved 31

ISO/IEC 13568:2002(E) 8 Concrete syntax

| Relation (* relation operator application *)
| Expression (* schema predicate *)
| true (* truth *)
| false (* falsity *)
| (-tok , Predicate ,)-tok (* parenthesized predicate *)
;

Expression = ∀ , SchemaText , • , Expression (* schema universal quantification *)
| ∃ , SchemaText , • , Expression (* schema existential quantification *)
| ∃1 , SchemaText , • , Expression (* schema unique existential quantification *)
| λ , SchemaText , • , Expression (* function construction *)
| µ , SchemaText , • , Expression (* definite description *)
| let , DeclName , == , Expression ,

{ ; -tok , DeclName , == , Expression } ,
• , Expression (* substitution expression *)

| Expression , ⇔ , Expression (* schema equivalence *)
| Expression , ⇒ , Expression (* schema implication *)
| Expression , ∨ , Expression (* schema disjunction *)
| Expression , ∧ , Expression (* schema conjunction *)
| ¬ , Expression (* schema negation *)
| if , Predicate , then , Expression , else , Expression (* conditional *)
| Expression , o

9 , Expression (* schema composition *)
| Expression , >> , Expression (* schema piping *)
| Expression , \ , (-tok , DeclName , { ,-tok , DeclName } ,)-tok

(* schema hiding *)
| Expression , � , Expression (* schema projection *)
| pre , Expression (* schema precondition *)
| Expression , × , Expression , { × , Expression } (* Cartesian product *)
| P , Expression (* powerset *)
| Application (* function and generic operator application *)
| Expression , Expression (* application *)
| Expression , STROKE (* schema decoration *)
| Expression , [-tok , DeclName , / , DeclName ,

{ ,-tok , DeclName , / , DeclName } ,]-tok (* schema renaming *)
| Expression , . , RefName (* binding selection *)
| Expression , . , NUMERAL (* tuple selection *)
| θ , Expression , { STROKE } (* binding construction *)
| RefName (* reference *)
| RefName , [-tok , Expression , { ,-tok , Expression } ,]-tok

(* generic instantiation *)
| NUMERAL (* number literal *)
| {-tok , [Expression , { ,-tok , Expression }] , }-tok (* set extension *)
| {-tok , SchemaText , • , Expression , }-tok (* set comprehension *)
| (({-tok , SchemaText , }-tok) — ({-tok , }-tok))

— ({-tok , Expression , }-tok)
(* characteristic set comprehension *)

| ([-tok , SchemaText ,]-tok) — ([-tok , Expression ,]-tok)
(* schema construction *)

| 〈| , [DeclName , == , Expression ,
{ ,-tok , DeclName , == , Expression }] , |〉 (* binding extension *)

| (-tok , Expression , ,-tok , Expression , { ,-tok , Expression } ,)-tok
(* tuple extension *)

| (-tok , µ , SchemaText ,)-tok (* characteristic definite description *)

32 c©ISO/IEC 2002—All rights reserved

8 Concrete syntax ISO/IEC 13568:2002(E)

| (-tok , Expression ,)-tok (* parenthesized expression *)
;

SchemaText = [DeclPart] , [|-tok , Predicate] ;

DeclPart = Declaration , { (; -tok | NL) , Declaration } ;

Declaration = DeclName , { ,-tok , DeclName } , : , Expression
| DeclName , == , Expression
| Expression
;

OperatorTemplate = relation , Template
| function , CategoryTemplate
| generic , CategoryTemplate
;

CategoryTemplate = PrefixTemplate
| PostfixTemplate
| Prec , Assoc , InfixTemplate
| NofixTemplate
;

Prec = NUMERAL ;

Assoc = leftassoc
| rightassoc
;

Template = PrefixTemplate
| PostfixTemplate
| InfixTemplate
| NofixTemplate
;

PrefixTemplate = (-tok , PrefixName ,)-tok
| (-tok , P , ,)-tok
;

PostfixTemplate = (-tok , PostfixName ,)-tok ;

InfixTemplate = (-tok , InfixName ,)-tok ;

NofixTemplate = (-tok , NofixName ,)-tok ;

DeclName = NAME
| OpName
;

RefName = NAME
| (-tok , OpName ,)-tok
;

OpName = PrefixName
| PostfixName
| InfixName
| NofixName
;

c©ISO/IEC 2002—All rights reserved 33

ISO/IEC 13568:2002(E) 8 Concrete syntax

PrefixName = PRE ,
| PREP ,
| L , { , ES | , , , SS } , (, ERE | , , , SRE) ,
| LP , { , ES | , , , SS } , (, EREP | , , , SREP) ,
;

PostfixName = , POST
| , POSTP
| , EL , { , ES | , , , SS } , (, ER | , , , SR)
| , ELP , { , ES | , , , SS } , (, ERP | , , , SRP)
;

InfixName = , I ,
| , IP ,
| , EL , { , ES | , , , SS } , (, ERE | , , , SRE) ,
| , ELP , { , ES | , , , SS } , (, EREP | , , , SREP) ,
;

NofixName = L , { , ES | , , , SS } , (, ER | , , , SR)
| LP , { , ES | , , , SS } , (, ERP | , , , SRP)
;

GenName = PrefixGenName
| PostfixGenName
| InfixGenName
| NofixGenName
;

PrefixGenName = PRE , NAME
| L , { NAME , (ES | SS) } , NAME , (ERE | SRE) , NAME
;

PostfixGenName = NAME , POST
| NAME , EL , { NAME , (ES | SS) } , NAME , (ER | SR)
;

InfixGenName = NAME , I , NAME
| NAME , EL , { NAME , (ES | SS) } , NAME , (ERE | SRE) , NAME
;

NofixGenName = L , { NAME , (ES | SS) } , NAME , (ER | SR) ;

Relation = PrefixRel
| PostfixRel
| InfixRel
| NofixRel
;

PrefixRel = PREP , Expression
| LP , ExpSep , (Expression , EREP | ExpressionList , SREP) , Expression
;

PostfixRel = Expression , POSTP
| Expression , ELP , ExpSep , (Expression , ERP | ExpressionList , SRP)
;

34 c©ISO/IEC 2002—All rights reserved

8 Concrete syntax ISO/IEC 13568:2002(E)

InfixRel = Expression , (∈ | =-tok | IP) , Expression ,
{ (∈ | =-tok | IP) , Expression }

| Expression , ELP , ExpSep ,
(Expression , EREP | ExpressionList , SREP) , Expression

;

NofixRel = LP , ExpSep , (Expression , ERP | ExpressionList , SRP) ;

Application = PrefixApp
| PostfixApp
| InfixApp
| NofixApp
;

PrefixApp = PRE , Expression
| L , ExpSep , (Expression , ERE | ExpressionList , SRE) , Expression
;

PostfixApp = Expression , POST
| Expression , EL , ExpSep , (Expression , ER | ExpressionList , SR)
;

InfixApp = Expression , I , Expression
| Expression , EL , ExpSep ,

(Expression , ERE | ExpressionList , SRE) , Expression
;

NofixApp = L , ExpSep , (Expression , ER | ExpressionList , SR) ;

ExpSep = { Expression , ES | ExpressionList , SS } ;

ExpressionList = [Expression , { ,-tok , Expression }] ;

8.3 User-defined operators

A template can reuse the same words as other templates in the same scope, so long as the same token is associated
with a word by all templates that use that word. A template’s whole operator name shall be different from those
of other templates in the same scope. All templates in a scope that use the same word shall have the same
precedence.

EXAMPLE 1 These two templates reuse a acceptably.

generic 30 leftassoc (a b)

generic 30 leftassoc (a c)

EXAMPLE 2 These two templates conflict unacceptably, because the whole operator names are identical.

function 10 leftassoc (d)

generic 20 leftassoc (d)

EXAMPLE 3 These two templates conflict unacceptably, because they reuse a and have different precedences.

generic 30 leftassoc (a b)

generic 40 leftassoc (a c)

In the Template rule’s auxiliaries, the name of each of the operator tokens shall not have any STROKEs.

NOTE 1 This is so that any common decoration of those words can be treated as an application of a decorated
instance of that operator.

c©ISO/IEC 2002—All rights reserved 35

ISO/IEC 13568:2002(E) 8 Concrete syntax

All prefix operators are right associative. All postfix operators are left associative. Different associativities shall
not be used at the same precedence level by operator template paragraphs in the same scope.

EXAMPLE 4 These two templates conflict unacceptably, because they have the same precedence but different
associativities.

function 50 leftassoc (e)

function 50 rightassoc (f)

Table 31 defines the relative precedences of the productions of Expression and Predicate. The rows in the
table are ordered so that the entries with higher precedence (and so that bind more strongly) appear nearer the
top of the table than those with lower precedence (that bind more weakly). Associativity has significance only in
determining the nesting of applications involving non-associative operators of the same precedence. Explicitly-
defined infix function and generic operator applications have a range of precedences specified numerically in the
corresponding operator template paragraph. Cartesian product expressions have precedence value 8 within that
numeric range.

NOTE 2 The order of productions in the Predicate and Expression rules is based roughly on the precedences of
their operators. Some productions have the same precedence as their neighbours, and so the separate table of operator
precedences is necessary.

NOTE 3 One way of parsing nested operator applications at different user-defined levels of precedence and associa-
tivity is explained by Lalonde and des Rivieres [9]. Lalonde and des Rivieres approach is to “use a grammar ... that
describes expressions without regard to the precedence [and associativity] of the operators”, and then to transform
the resulting parse tree to take account of precedence and associativity. Assuming the grammar uses left associativity
for all operators, the transformations to take into account precedence and associativity where necessary are as follows.

(e1 infix1 e2) infix2 e3 =⇒ e1 infix1 (e2 infix2 e3)

(e1 infix e2) post =⇒ e1 infix (e2 post)

(pre e) post =⇒ pre (e post)

If right associativity was instead assumed, then the following transformations would be needed.

e1 infix1 (e2 infix2 e3) =⇒ (e1 infix1 e2) infix2 e3

pre (e1 infix e2) =⇒ (pre e1) infix e2

Using distinct variants of the operator tokens PRE|...|SS for relational operators from those for function and generic
operators allows these transformations to avoid dealing with those notations whose precedences lie between the
relations and the functions, such as the schema operations.

NOTE 4 In the PrefixTemplate rule, the production for powerset enables explicit definition of P1 in the mathe-
matical toolkit to coexist with the treatment of P as a keyword by the lexis.

8.4 Additional syntactic restrictions and notes

STROKE is used in three contexts: within NAMEs, in binding construction expressions, and in schema decoration
expressions. The condition for a STROKE to be considered as part of a NAME was given in 7.3. Other STROKEs are
considered to be parts of binding construction expressions if they can be when interpreted from left to right. The
schema decoration expression interpretation is considered last.

EXAMPLE 1 In θS ′ ′ ′, the first ′ is part of the NAME S ′, the second ′ can be part of the binding construction
expression, and the third ′ is syntactically part of a schema decoration expression, though that will be rejected by
the type inference rules as only schemas can be decorated, not bindings.

A predicate can be just an expression, yet the same logical operators (∧, ∨, ¬ , ⇒, ⇔, ∀ , ∃ , ∃1) can be used
in both expressions and predicates. Where a predicate is expected, and one of these logical operators is used on
expressions, there is an ambiguity: either the whole logical operation is an expression and that expression is used

36 c©ISO/IEC 2002—All rights reserved

8 Concrete syntax ISO/IEC 13568:2002(E)

Table 31 — Operator precedences and associativities

Productions Associativity
binding construction
binding selection, tuple selection
schema renaming
schema decoration
application left
postfix function and generic operator application
powerset, prefix function and generic operator application
Cartesian product, infix function and generic operator application
schema precondition
schema projection left
schema hiding
schema piping
schema composition
conditional
substitution expression
definite description
function construction
relation operator application
negation
conjunction
disjunction
implication right
equivalence
universal, existential and unique existential quantifications
newline conjunction, semicolon conjunction

as a predicate, or the whole logical operation is a predicate involving expressions each used as a predicate. This
ambiguity is benign, as both interpretations have the same precedence, associativity and meaning.

A section header shall be parsed in its entirety before bringing the declarations and operator templates of its
parent sections into scope.

NOTE 1 This prevents surprises when the name of a parent section is the same as the name of an operator defined
in another parent.

Application expressions’ lack of any keyword token between their juxtaposed expressions is a problem for some
implementations of parsers, which may require the parentheses in phrases such as f (seq X).

NOTE 2 The juxtaposition of two expressions ee is always parsed as the application of function e to argument
e, never as the application of relation e to argument e which in some previous dialects of Z, e.g. King et al [8], was
equivalent to the relation e ∈ e. In Standard Z, membership is the normal form (canonical representation) of all
relational predicates (see 12.2.10), and juxtaposition is the normal form of all application expressions (see 12.2.11).

NOTE 3 The syntax of conjectures is deliberately simple. This is so as to be compatible with the syntaxes of
sequents as found in as many different theorem provers as possible, while establishing a common form to enable
interchange.

NOTE 4 Implementations of parsers commonly inspect the next token from the input stream and have to decide
there and then whether that token is another token in an incomplete phrase or whether the current phrase is complete
and the token is starting a new phrase. The tokens defined by the lexis (clause 7) are insufficient for such an
implementation of a parser.

c©ISO/IEC 2002—All rights reserved 37

ISO/IEC 13568:2002(E) 8 Concrete syntax

EXAMPLE 2 At the first comma in the set extension {x , y , z} the x shall be seen to be an expression, yet the
phrase might yet turn out to be the set comprehension {x , y , z : e}.

EXAMPLE 3 At the opening square bracket in the application to a schema construction i [e1; e2] the name i
shall be seen to be an expression, yet the phrase might yet turn out to be the generic instantiation i [e1].

One solution to such problems is to try all possible parses and accept the one that works. Another solution is to
have the lexer lookahead far enough to be able to distinguish which of the alternative cases is present, and to provide
the parser with one of several distinct tokens. Expressions {x , y , z} and {x , y , z : e} can be distinguished by looking
ahead from a comma, over following alternating names (including operator names) and commas, for a : or == token,
and using distinct comma tokens depending on whether that is seen or not. Expressions i [e1; e2] and i [e1] can be
distinguished by looking ahead from the open square bracket for the matching closing square bracket, stopping if a
; -tok, :, == or |-tok token is encountered, and using distinct open square bracket tokens for the matched and stopped
cases.

NOTE 5 An ExpressionList phrase will be regarded as an expression whose value is a sequence (see 12.2.12).
In defining operators that take such ExpressionLists as arguments, it is convenient to have the operations of
sequence toolkit (see B.8) in scope.

NOTE 6 The ExpressionList rule is used only in operator applications, not in set extension, tuple extension
and generic instantiation expressions, so that the syntactic transformation in 12.2.12 is applied only to operator
applications.

8.5 Box renderings

There are two different sets of box renderings in widespread use, as illustrated here. Any particular presentation
of a section shall use one set or the other throughout. The middle line shall be omitted when the paragraph has
no predicates, but otherwise shall be retained if the paragraph has no declarations. The outlines need be only as
wide as the text, but are here shown as wide as the page.

8.5.1 First box rendering

The following four paragraphs illustrate the first of two alternative renderings of box tokens.

An axiomatic paragraph, involving the AX, |-tok and END tokens, shall have this box rendering.

DeclPart

Predicate

A schema paragraph, involving the SCH, |-tok and END tokens, shall have this box rendering.

NAME
DeclPart

Predicate

A generic axiomatic paragraph, involving the GENAX, |-tok and END tokens, shall have this box rendering.

[Formals]
DeclPart

Predicate

A generic schema paragraph, involving the GENSCH, |-tok and END tokens, shall have this box rendering.

NAME [Formals]
DeclPart

Predicate

38 c©ISO/IEC 2002—All rights reserved

9 Characterisation rules ISO/IEC 13568:2002(E)

8.5.2 Second box rendering

The following four paragraphs illustrate the second of two alternative renderings of box tokens.

An axiomatic paragraph, involving the AX, |-tok and END tokens, shall have this box rendering.

DeclPart

Predicate

A schema paragraph, involving the SCH, |-tok and END tokens, shall have this box rendering.

NAME
DeclPart

Predicate

A generic axiomatic paragraph, involving the GENAX, |-tok and END tokens, shall have this box rendering.

[Formals]
DeclPart

Predicate

A generic schema paragraph, involving the GENSCH, |-tok and END tokens, shall have this box rendering.

NAME [Formals]
DeclPart

Predicate

9 Characterisation rules

9.1 Introduction

The characterisation rules together map the parse tree of a concrete syntax sentence to the parse tree of an
equivalent concrete syntax sentence in which all implicit characteristic tuples have been made explicit.

Only concrete trees that are mapped to different trees are given explicit characterisation rules. The characterisa-
tion rules are listed in the same order as the corresponding productions of the concrete syntax.

Characteristic tuples are calculated from schema texts by the metalanguage function chartuple (see 9.2).

9.2 Characteristic tuple

A characteristic tuple is computed in two phases: charac, which returns a sequence of expressions, and mktuple,
which converts that sequence into the characteristic tuple.

chartuple t = mktuple (charac t)

Sequences of expressions are enclosed between metalanguage brackets 〈 and 〉, in general 〈e, ..., en〉. Two se-
quences of expressions are concatenated by the a operator.

〈e, ..., en〉a 〈en+, ..., en+m〉 = 〈e, ..., en, en+, ..., en+m〉

c©ISO/IEC 2002—All rights reserved 39

ISO/IEC 13568:2002(E) 10 Annotated syntax

charac (d; ...; dn | p) = charac (d; ...; dn)

charac (d; ...; dn) = charac d a ...a charac dn where n ≥ 1
charac () = 〈〈| |〉〉

charac (i, ..., in : e) = 〈i, ..., in〉
charac (i == e) = 〈i〉

charac (e ∗) = 〈θ e∗〉

mktuple 〈e〉 = e

mktuple 〈e, ..., en〉 = (e, ..., en) where n ≥ 2

NOTE 1 In the last case of charac, the type inference rule in 13.2.6.9 ensures that e is a schema.

NOTE 2 In mktuple, the result is a Z expression, so the brackets in its second equation are those of a tuple extension.

NOTE 3 The characteristic tuple operation determines a new phrase for use in a larger phrase. It does not ma-
nipulate semantic values or type values. It is more akin to a transformation rule in that it operates on phrases, but
unlike a transformation rule it does not replace a phrase by an equivalent phrase. Its definition needs auxiliaries for
representing sequences of phrases and concatenating sequences of phrases. The sequence brackets defined in 4.2.11
are not suitable, as they manipulate metalanguage sequences. Rather than invent yet more notation, the usual Z-like
notations for sequences are redefined just for this definition.

9.3 Formal definition of characterisation rules

9.3.1 Function construction expression

The value of the function construction expression λ t • e is the function associating values of the characteristic
tuple of t with corresponding values of e.

λ t • e =⇒ {t • (chartuple t, e)}

It is semantically equivalent to the set of pairs representation of that function.

9.3.2 Characteristic set comprehension expression

The value of the characteristic set comprehension expression {t} is the set of the values of the characteristic tuple
of t.

{t} =⇒ {t • chartuple t}

It is semantically equivalent to the corresponding set comprehension expression in which the characteristic tuple
is made explicit.

9.3.3 Characteristic definite description expression

The value of the characteristic definite description expression (µ t) is the sole value of the characteristic tuple of
schema text t.

(µ t) =⇒ µ t • chartuple t

It is semantically equivalent to the corresponding definite description expression in which the characteristic tuple
is made explicit.

40 c©ISO/IEC 2002—All rights reserved

10 Annotated syntax ISO/IEC 13568:2002(E)

10 Annotated syntax

10.1 Introduction

The annotated syntax defines a language that includes all sentences that could be produced by application of the
syntactic transformation rules (clause 12) to sentences of the concrete syntax (clause 8). This language’s set of
sentences would be a subset of that defined by the concrete syntax but for introduction of type annotations and
use of expressions in place of schema texts.

Like the concrete syntax, this annotated syntax is written in terms of the tokens generated by the lexis; there
are no terminal symbols within this syntax. The added type annotation notation uses three tokens not defined
in the lexis: GIVEN, GENTYPE, and o

o .

Some additional characters that are presumed to be distinct from the characters used in concrete phrases are
introduced as follows. The constituent words of operators are glued together to form single names using the
character 1, which belongs to the WORDGLUE character class. (These single names cannot clash with any existing
names.) For comparing the bindings of two schemas, one schema is decorated using the character ./ , which
belongs to the STROKECHAR character class. (Inclusion of a schema so decorated cannot capture any existing
references.) For defining the semantics of types, the names of given sets and generic parameters are decorated
with characters ♥ and ♠ respectively, both of which belong to the STROKECHAR character class. (This avoids local
declarations of the same names making holes in the scopes of the types.)

There are no parentheses in the annotated syntax as defined here. A sentence or phrase of the annotated
syntax should be thought of as a tree structure of nested formulae. When presented as linear text, however, the
precedences of the concrete syntax may be assumed and parentheses may be inserted to override those precedences.
The precedence of the type annotation o

o operator is then weaker than all other operators, and the precedences
and associativities of the type notations are analogous to those of the concrete notations of similar appearance.

NOTE 1 This annotated syntax permits some verification of the syntactic transformation rules to be performed.

NOTE 2 The annotated syntax is similar to an annotated tree (abstract syntax) used in a tool, but the level of
abstraction effected by the characterization rules and syntactic transformation rules might not be appropriate for a
tool.

10.2 Formal definition of annotated syntax

Specification = { Section } ; (* sectioned specification *)

Section = ZED , section , NAME , parents , [NAME , { ,-tok , NAME }] , END ,
{ Paragraph } , [o

o , SectTypeEnv] ; (* inheriting section *)

Paragraph = ZED , [-tok , NAME , { ,-tok , NAME } ,]-tok , END ,
[o

o , Signature] (* given types *)
| AX , Expression , END ,

[o
o , Signature] (* axiomatic description *)

| GENAX , [-tok , NAME , { ,-tok , NAME } ,]-tok , Expression , END ,
[o

o , Signature] (* generic axiomatic description *)
| ZED , NAME , ::= , NAME , [〈〈 , Expression , 〉〉] ,

{ |-tok , NAME , [〈〈 , Expression , 〉〉] } ,
{ & , NAME , ::= , NAME , [〈〈 , Expression , 〉〉] ,
{ |-tok , NAME , [〈〈 , Expression , 〉〉] } } , END ,
[o

o , Signature] (* free types *)
| ZED , `? , Predicate , END ,

[o
o , Signature] (* conjecture *)

| ZED , [-tok , NAME , { ,-tok , NAME } ,]-tok , `? , Predicate , END ,
[o

o , Signature] (* generic conjecture *)
;

c©ISO/IEC 2002—All rights reserved 41

ISO/IEC 13568:2002(E) 10 Annotated syntax

Predicate = Expression , ∈ , Expression (* membership *)
| true (* truth *)
| ¬ , Predicate (* negation *)
| Predicate , ∧ , Predicate (* conjunction *)
| ∀ , Expression , • , Predicate (* universal quantification *)
| ∃1 , Expression , • , Predicate (* unique existential quantification *)
;

Expression = NAME ,
[o

o , Type] (* reference *)
| NAME , [-tok , Expression , { ,-tok , Expression } ,]-tok ,

[o
o , Type] (* generic instantiation *)

| {-tok , [Expression , { ,-tok , Expression }] , }-tok ,
[o

o , Type] (* set extension *)
| {-tok , Expression , • , Expression , }-tok ,

[o
o , Type] (* set comprehension *)

| P , Expression ,
[o

o , Type] (* powerset *)
| (-tok , Expression , ,-tok , Expression , { ,-tok , Expression } ,)-tok ,

[o
o , Type] (* tuple extension *)

| Expression , . , NUMERAL ,
[o

o , Type] (* tuple selection *)
| 〈| , NAME , == , Expression ,

{ ,-tok , NAME , == , Expression } , |〉 ,
[o

o , Type] (* binding extension *)
| θ , Expression , { STROKE } ,

[o
o , Type] (* binding construction *)

| Expression , . , NAME ,
[o

o , Type] (* binding selection *)
| Expression , Expression ,

[o
o , Type] (* application *)

| µ , Expression , • , Expression ,
[o

o , Type] (* definite description *)
| [-tok , NAME , : , Expression ,]-tok ,

[o
o , Type] (* variable construction *)

| [-tok , Expression , |-tok , Predicate ,]-tok ,
[o

o , Type] (* schema construction *)
| ¬ , Expression ,

[o
o , Type] (* schema negation *)

| Expression , ∧ , Expression ,
[o

o , Type] (* schema conjunction *)
| Expression , \ , (-tok , NAME , { ,-tok , NAME } ,)-tok ,

[o
o , Type] (* schema hiding *)

| ∀ , Expression , • , Expression ,
[o

o , Type] (* schema universal quantification *)
| ∃1 , Expression , • , Expression ,

[o
o , Type] (* schema unique existential quantification *)

| Expression , [-tok , NAME , / , NAME ,
{ ,-tok , NAME , / , NAME } ,]-tok ,

[o
o , Type] (* schema renaming *)

| pre , Expression ,
[o

o , Type] (* schema precondition *)

42 c©ISO/IEC 2002—All rights reserved

11 Prelude ISO/IEC 13568:2002(E)

| Expression , o
9 , Expression ,

[o
o , Type] (* schema composition *)

| Expression , >> , Expression ,
[o

o , Type] (* schema piping *)
| Expression , STROKE ,

[o
o , Type] (* schema decoration *)

;

SectTypeEnv = [NAME , : , (-tok , NAME , ,-tok , Type ,)-tok ,
{ ; -tok , NAME , : , (-tok , NAME , ,-tok , Type ,)-tok }] ;

Type = [-tok , NAME , { ,-tok , NAME } ,]-tok ,
Type2 , [,-tok , Type2] (* generic type *)

| Type2
;

Type2 = GIVEN , NAME (* given type *)
| GENTYPE , NAME (* generic parameter type *)
| P , Type2 (* powerset type *)
| Type2 , × , Type2 , { × , Type2 } (* Cartesian product type *)
| [-tok , Signature ,]-tok (* schema type *)
;

Signature = [NAME , : , Type , { ; -tok , NAME , : , Type }]
| ε (* empty signature *)
;

10.3 Notes

NOTE 1 More free types than necessary are permitted by this syntax: as a result of the syntactic transformation
in 12.2.3.5, all elements appear before all injections.

NOTE 2 The only signatures that contain generic types are those in the annotations of generic axiomatic description
paragraphs.

11 Prelude

Copyright notice
The reproduction of this clause is permitted on the understanding that this material is public

domain, and on the condition that this International Standard is referenced as the source document.
With the exception of clauses 6.2, 7.2, 8.2, 11 and annex B, all other parts of the text are subject to
the usual copyright rules stated on page ii of this International Standard.

11.1 Introduction

The prelude is a Z section. It is an implicit parent of every other section. It assists in defining the meaning
of number literal expressions (see 12.2.6.9), and the list arguments of operators (see 12.2.12), via syntactic
transformation rules later in this International Standard. The prelude is presented here using the mathematical
lexis.

11.2 Formal definition of prelude

section prelude

The section is called prelude and has no parents.

NOTE 1

generic (P)

c©ISO/IEC 2002—All rights reserved 43

ISO/IEC 13568:2002(E) 12 Syntactic transformation rules

P has already been introduced in this International Standard (see 8.3), so this operator template is not necessary.
However, it may be a convenient way of introducing to a tool the association of P with the appropriate token and
precedence, especially in preparation for the toolkit’s P1 (see B.3.6). A tool may introduce × here similarly, that
being the only other Z core notation whose precedence lies amongst those of user-defined operators.

[A]

The given type A, pronounced “arithmos”, provides a supply of values for use in specifying number systems.

N : PA

The set of natural numbers, N, is a subset of A.

number literal 0 : N
number literal 1 : N

0 and 1 are natural numbers, all uses of which are transformed to references to these declarations (see 12.2.6.9).

function 30 leftassoc (+)

+ : P ((A× A)× A)

∀m,n : N • ∃1 p : (+) • p.1 = (m,n)
∀m,n : N • m + n ∈ N
∀m,n : N | m + 1 = n + 1 • m = n
∀m : N • ¬ m + 1 = 0
∀w : P N | 0 ∈ w ∧ (∀ y : w • y + 1 ∈ w) • w = N

∀m : N • m + 0 = m
∀m,n : N • m + (n + 1) = m + n + 1

Addition is defined here for natural numbers. (It is extended to integers in the mathematical toolkit, annex B.)
Addition is a function. The sum of two natural numbers is a natural number. The operation of adding 1 is an
injection on natural numbers, and produces a result different from 0. There is an induction constraint that all
natural numbers are either 0 or are formed by adding 1 to another natural number. 0 is an identity of addition.
Addition is associative.

NOTE 2 The definition of addition is equivalent to the following definition, which is written using notation from
the mathematical toolkit (and so is unsuitable as the normative definition here).

+ : A× A↔ A

(N× N)C (+) ∈ (N× N)→ N

λn : N • n + 1 ∈ N� N

disjoint〈{0}, {n : N • n + 1}〉
∀w : PN | {0} ∪ {n : w • n + 1} ⊆ w • w = N

∀m : N • m + 0 = m

∀m,n : N • m + (n + 1) = m + n + 1

12 Syntactic transformation rules

12.1 Introduction

The syntactic transformation rules together map the parse tree of a concrete syntax sentence to the parse tree of
a semantically equivalent annotated syntax sentence. The resulting annotated parse trees may refer to definitions
of the prelude.

44 c©ISO/IEC 2002—All rights reserved

12 Syntactic transformation rules ISO/IEC 13568:2002(E)

Although exhaustive application of the syntactic transformation rules produces annotated parse trees, individual
syntactic transformation rules can produce a mixture of concrete and annotated notation. Explicit distinction of
the two is not done, as it would be cumbersome and detract from readability.

Only concrete trees that are not in the annotated syntax are given explicit syntactic transformation rules. The
syntactic transformation rules are listed in the same order as the corresponding productions of the concrete
syntax. Where an individual concrete syntax production is expressed using alternations, a separate syntactic
transformation rule is given for each alternative.

All applications of syntactic transformation rules that generate new declarations shall choose the names of those
declarations to be such that they do not capture references during subsequent typechecking.

Rules that generate type annotations generate annotations with fresh variables each time they are applied.

12.2 Formal definition of syntactic transformation rules

12.2.1 Specification

12.2.1.1 Anonymous specification

The anonymous specification D ... Dn is semantically equivalent to the sectioned specification comprising a
single section containing those paragraphs with the mathematical toolkit of annex B as its parent.

D ... Dn =⇒ Mathematical toolkit ZED section Specification parents standard toolkit END D ... Dn

In this transformation, Mathematical toolkit denotes the entire text of annex B. The name given to the section
is not important: it need not be Specification, though it shall not be prelude or that of any section of the
mathematical toolkit.

12.2.2 Section

12.2.2.1 Base section

The base section ZED section i END D ... Dn is semantically equivalent to the inheriting section that inherits
from no parents (bar prelude).

ZED section i END D ... Dn =⇒ ZED section i parents END D ... Dn

12.2.3 Paragraph

12.2.3.1 Schema definition paragraph

The schema definition paragraph SCH i t END introduces the global name i, associating it with the schema that
is the value of t.

SCH i t END =⇒ AX [i == t] END

The paragraph is semantically equivalent to the axiomatic description paragraph whose sole declaration associates
the schema’s name with the expression resulting from syntactic transformation of the schema text.

12.2.3.2 Generic schema definition paragraph

The generic schema definition paragraph GENSCH i [i, ..., in] t END can be instantiated to produce a schema
definition paragraph.

GENSCH i [i, ..., in] t END =⇒ GENAX [i, ..., in] [i == t] END

It is semantically equivalent to the generic axiomatic description paragraph with the same generic parameters and
whose sole declaration associates the schema’s name with the expression resulting from syntactic transformation
of the schema text.

c©ISO/IEC 2002—All rights reserved 45

ISO/IEC 13568:2002(E) 12 Syntactic transformation rules

12.2.3.3 Horizontal definition paragraph

The horizontal definition paragraph ZED i == e END introduces the global name i, associating with it the value
of e.

ZED i == e END =⇒ AX [i == e] END

It is semantically equivalent to the axiomatic description paragraph that introduces the same single declaration.

12.2.3.4 Generic horizontal definition paragraph

The generic horizontal definition paragraph ZED i [i, ..., in] == e END can be instantiated to produce a horizontal
definition paragraph.

ZED i [i, ..., in] == e END =⇒ GENAX [i, ..., in] [i == e] END

It is semantically equivalent to the generic axiomatic description paragraph with the same generic parameters
and that introduces the same single declaration.

12.2.3.5 Free types paragraph

The transformation of free types paragraphs is done in two stages. First, the branches are permuted to bring
elements to the front and injections to the rear.

... | g〈〈e〉〉 | h | ... =⇒ ... | h | g〈〈e〉〉 | ...

Exhaustive application of this syntactic transformation rule effects a sort.

The second stage requires implicit generic instantiations to have been filled in, which is done during typechecking
(see 13.2.3.3). Hence that second stage is delayed until after typechecking, where it appears in the form of a
semantic transformation rule (see 14.2.3.1).

12.2.4 Operator template

There are no syntactic transformation rules for operator template paragraphs; rather, operator template para-
graphs determine which syntactic transformation rule to use for each phrase that refers to or applies an operator.

12.2.5 Predicate

12.2.5.1 Newline conjunction predicate

The newline conjunction predicate p NL p is true if and only if both its predicates are true.

p NL p =⇒ p ∧ p

It is semantically equivalent to the conjunction predicate p ∧ p.

12.2.5.2 Semicolon conjunction predicate

The semicolon conjunction predicate p; p is true if and only if both its predicates are true.

p; p =⇒ p ∧ p

It is semantically equivalent to the conjunction predicate p ∧ p.

12.2.5.3 Existential quantification predicate

The existential quantification predicate ∃ t • p is true if and only if p is true for at least one value of t.

∃ t • p =⇒ ¬ ∀ t • ¬ p

It is semantically equivalent to p being false for not all values of t.

46 c©ISO/IEC 2002—All rights reserved

12 Syntactic transformation rules ISO/IEC 13568:2002(E)

12.2.5.4 Equivalence predicate

The equivalence predicate p ⇔ p is true if and only if both p and p are true or neither is true.

p ⇔ p =⇒ (p ⇒ p) ∧ (p ⇒ p)

It is semantically equivalent to each of p and p being true if the other is true.

12.2.5.5 Implication predicate

The implication predicate p ⇒ p is true if and only if p is true if p is true.

p ⇒ p =⇒ ¬ p ∨ p

It is semantically equivalent to p being false disjoined with p being true.

12.2.5.6 Disjunction predicate

The disjunction predicate p ∨ p is true if and only if at least one of p and p is true.

p ∨ p =⇒ ¬ (¬ p ∧ ¬ p)

It is semantically equivalent to not both of p and p being false.

12.2.5.7 Schema predicate

The schema predicate e is true if and only if the binding of the names in the signature of schema e satisfies the
constraints of that schema.

e =⇒ θ e ∈ e

It is semantically equivalent to the binding constructed by θ e being a member of the set denoted by schema e.

12.2.5.8 Falsity predicate

The falsity predicate false is never true.

false =⇒ ¬ true

It is semantically equivalent to the negation of true.

12.2.5.9 Parenthesized predicate

The parenthesized predicate (p) is true if and only if p is true.

(p) =⇒ p

It is semantically equivalent to p.

12.2.6 Expression

12.2.6.1 Schema existential quantification expression

The value of the schema existential quantification expression ∃ t • e is the set of bindings of schema e restricted
to exclude names that are in the signature of t, for at least one binding of the schema t.

∃ t • e =⇒ ¬ ∀ t • ¬ e

It is semantically equivalent to the result of applying de Morgan’s law.

12.2.6.2 Substitution expression

The value of the substitution expression let i == e; ...; in == en • e is the value of e when all of its references
to the names have been substituted by the values of the corresponding expressions.

let i == e; ...; in == en • e =⇒ µ i == e; ...; in == in • e

It is semantically equivalent to the similar definite description expression.

c©ISO/IEC 2002—All rights reserved 47

ISO/IEC 13568:2002(E) 12 Syntactic transformation rules

12.2.6.3 Schema equivalence expression

The value of the schema equivalence expression e ⇔ e is that schema whose signature is the union of those of
schemas e and e, and whose bindings are those whose relevant restrictions are either both or neither in e and
e.

e ⇔ e =⇒ (e ⇒ e) ∧ (e ⇒ e)

It is semantically equivalent to the schema conjunction of the schema implication e ⇒ e with the schema
implication e ⇒ e.

12.2.6.4 Schema implication expression

The value of the schema implication expression e ⇒ e is that schema whose signature is the union of those of
schemas e and e, and whose bindings are those whose restriction to the signature of e is in the value of e if
its restriction to the signature of e is in the value of e.

e ⇒ e =⇒ ¬ e ∨ e

It is semantically equivalent to the schema disjunction of the schema negation ¬ e with e.

12.2.6.5 Schema disjunction expression

The value of the schema disjunction expression e ∨ e is that schema whose signature is the union of those of
schemas e and e, and whose bindings are those whose restriction to the signature of e is in the value of e or
its restriction to the signature of e is in the value of e.

e ∨ e =⇒ ¬ (¬ e ∧ ¬ e)

It is semantically equivalent to the schema negation of the schema conjunction of the schema negations of e and
e.

12.2.6.6 Conditional expression

The value of the conditional expression if p then e else e is the value of e if p is true, and is the value of e if
p is false.

if p then e else e =⇒ µ i : {e, e} | p ∧ i = e ∨ ¬ p ∧ i = e • i

It is semantically equivalent to the definite description expression whose value is either that of e or that of e
such that if p is true then it is e or if p is false then it is e.

12.2.6.7 Schema projection expression

The value of the schema projection expression e � e is the schema that is like the conjunction e ∧ e but whose
signature is restricted to just that of schema e.

e � e =⇒ {e; e • θ e}

It is semantically equivalent to that set of bindings of names in the signature of e to values that satisfy the
constraints of both e and e.

12.2.6.8 Cartesian product expression

The value of the Cartesian product expression e× ...× en is the set of all tuples whose components are members
of the corresponding sets that are the values of its expressions.

e × ...× en =⇒ {i : e; ...; in : en • (i, ..., in)}

It is semantically equivalent to the set comprehension expression that declares members of the sets and assembles
those members into tuples.

48 c©ISO/IEC 2002—All rights reserved

12 Syntactic transformation rules ISO/IEC 13568:2002(E)

12.2.6.9 Number literal expression

The value of the multiple-digit number literal expression bc is the number that it denotes.

bc =⇒ b + b + b + b + b +
b + b + b + b + b + c

It is semantically equivalent to the sum of ten repetitions of the number literal expression b formed from all but
the last digit, added to that last digit.

0 =⇒ number literal 0
1 =⇒ number literal 1
2 =⇒ 1 + 1
3 =⇒ 2 + 1
4 =⇒ 3 + 1
5 =⇒ 4 + 1
6 =⇒ 5 + 1
7 =⇒ 6 + 1
8 =⇒ 7 + 1
9 =⇒ 8 + 1

The number literal expressions 0 and 1 are semantically equivalent to number literal 0 and number literal 1 re-
spectively as defined in section prelude. The remaining digits are defined as being successors of their predecessors,
using the function + as defined in section prelude.

NOTE These syntactic transformations are applied only to NUMERAL tokens that form number literal expressions,
not to other NUMERAL tokens (those in tuple selection expressions and operator template paragraphs), as those other
occurrences of NUMERAL do not have semantic values associated with them.

12.2.6.10 Schema construction expression

The value of the schema construction expression [t] is that schema whose signature is the names declared by the
schema text t, and whose bindings are those that satisfy the constraints in t.

[t] =⇒ t

It is semantically equivalent to the schema resulting from syntactic transformation of the schema text t.

12.2.6.11 Parenthesized expression

The value of the parenthesized expression (e) is the value of expression e.

(e) =⇒ e

It is semantically equivalent to e.

12.2.7 Schema text

There is no separate schema text class in the annotated syntax: all concrete schema texts are transformed to
expressions.

12.2.7.1 Declaration

Each declaration is transformed to an equivalent expression.

A constant declaration is equivalent to a variable declaration in which the variable ranges over a singleton set.

i == e =⇒ i : {e}

c©ISO/IEC 2002—All rights reserved 49

ISO/IEC 13568:2002(E) 12 Syntactic transformation rules

A comma-separated multiple declaration is equivalent to the schema conjunction of variable construction expres-
sions in which all variables are constrained to be of the same type.

i, ..., in : e =⇒ [i : e o
o α] ∧ ... ∧ [in : e o

o α]

12.2.7.2 DeclPart

Each declaration part is transformed to an equivalent expression.

d; ...; dn =⇒ d ∧ ... ∧ dn

If NL tokens have been used in place of any ; s, the same transformation to schema conjunctions applies.

12.2.7.3 SchemaText

Given the above transformations of Declaration and DeclPart, any DeclPart in a SchemaText can be assumed
to be a single expression.

A SchemaText with non-empty DeclPart and Predicate is equivalent to the schema construction expression
containing that schema text.

e | p =⇒ [e | p]

If both DeclPart and Predicate are omitted, the schema text is equivalent to the set containing the empty
binding.

=⇒ {〈| |〉}

If just the DeclPart is omitted, the schema text is equivalent to the schema construction expression in which
there is a set containing the empty binding.

| p =⇒ [{〈| |〉} | p]

12.2.8 Name

These syntactic transformation rules address the concrete syntax productions DeclName, RefName, and OpName.

All DeclNames and RefNames that are NAMEs (not operator names) are transformed to those underlying NAMEs.
Thus, any DeclName and RefName nodes in the parse tree are elided.

All operator names are transformed to NAMEs, by removing spaces and replacing each by a Z character that is
not acceptable in concrete NAMEs. The Z character 1 is used for this purpose here. The resulting NAME is given
the same STROKEs as the component names of the operator, all of which shall have the same STROKEs.

Each resulting NAME shall be one for which there is an operator template paragraph in scope.

NOTE This excludes names made up of words from different operator templates.

EXAMPLE Given the operator templates

generic 30 leftassoc (a b)

generic 40 leftassoc (c d)

the following declaration conforms to the syntax but is excluded by this restriction.

X a Y d Z == X ×Y × Z

In every operator name generated by syntactic transformation, for every ’↘’ WORDGLUE character in its WORD
part, there shall be a paired following ’↖’ WORDGLUE character, for every ’↗’ WORDGLUE character in its WORD
part, there shall be a paired following ’↙’ WORDGLUE character, and these shall occur only in nested pairs.

50 c©ISO/IEC 2002—All rights reserved

12 Syntactic transformation rules ISO/IEC 13568:2002(E)

12.2.8.1 PrefixName

pre =⇒ pre1

prep =⇒ prep1

ln ess ... essn− ere =⇒ ln1ess...1essn−1ere1

ln ess ... essn− sre =⇒ ln1ess...1essn−1sre1

lp ess ... essn− erep =⇒ lp1ess...1essn−1erep1

lp ess ... essn− srep =⇒ lp1ess...1essn−1srep1

12.2.8.2 PostfixName

post =⇒ 1post

postp =⇒ 1postp

el ess ... essn− er =⇒ 1el1ess...1essn−1er

el ess ... essn− sr =⇒ 1el1ess...1essn−1sr

elp ess ... essn− erp =⇒ 1elp1ess...1essn−1erp

elp ess ... essn− srp =⇒ 1elp1ess...1essn−1srp

12.2.8.3 InfixName

in =⇒ 1in1

ip =⇒ 1ip1

el ess ... essn− ere =⇒ 1el1ess...1essn−1ere1

el ess ... essn− sre =⇒ 1el1ess...1essn−1sre1

elp ess ... essn− erep =⇒ 1elp1ess...1essn−1erep1

elp ess ... essn− srep =⇒ 1elp1ess...1essn−1srep1

12.2.8.4 NofixName

ln ess ... essn− er =⇒ ln1ess...1essn−1er

ln ess ... essn− sr =⇒ ln1ess...1essn−1sr

lp ess ... essn− erp =⇒ ln1ess...1essn−1erp

lp ess ... essn− srp =⇒ ln1ess...1essn−1srp

12.2.9 Generic name

All generic names are transformed to juxtapositions of NAMEs and generic parameter lists. This causes the generic
operator definition paragraphs in which they appear to become generic horizontal definition paragraphs, and thus
be amenable to further syntactic transformation.

Each resulting NAME shall be one for which there is an operator template paragraph in scope (see 12.2.8).

c©ISO/IEC 2002—All rights reserved 51

ISO/IEC 13568:2002(E) 12 Syntactic transformation rules

12.2.9.1 PrefixGenName

pre i =⇒ pre1 [i]
ln i ess ... in− essn− in− ere in =⇒ ln1ess...1essn−1ere1 [i, ..., in−, in−, in]
ln i ess ... in− essn− in− sre in =⇒ ln1ess...1essn−1sre1 [i, ..., in−, in−, in]

12.2.9.2 PostfixGenName

i post =⇒ 1post [i]
iel i ess ... in− essn− in er =⇒ 1el1ess...1essn−1er [i, i, ..., in−, in]
iel i ess ... in− essn− in sr =⇒ 1el1ess...1essn−1sr [i, i, ..., in−, in]

12.2.9.3 InfixGenName

iin i =⇒ 1in1 [i, i]
iel i ess ... in− essn− in− ere in =⇒ 1el1ess...1essn−1ere1 [i, i, ..., in−, in−, in]
iel i ess ... in− essn− in− sre in =⇒ 1el1ess...1essn−1sre1 [i, i, ..., in−, in−, in]

12.2.9.4 NofixGenName

ln i ess ... in− essn− in er =⇒ ln1ess...1essn−1er [i, ..., in−, in]
ln i ess ... in− essn− in sr =⇒ ln1ess...1essn−1sr [i, ..., in−, in]

12.2.10 Relation operator application

All relation operator applications are transformed to annotated membership predicates.

Each relation NAME shall be one for which there is an operator template paragraph in scope (see 12.2.8).

The left-hand sides of many of these transformation rules involve ExpSep phrases: they use es metavariables.
None of them use ss metavariables: in other words, only the Expression ES case of ExpSep is specified, not
the ExpressionList SS case. Where the latter case occurs in a specification, the ExpressionList shall be
transformed by the rule in 12.2.12 to an expression, and thence a transformation analogous to that specified for
the former case can be performed, differing only in that a ss appears in the relation name in place of an es.

12.2.10.1 PrefixRel

prep e =⇒ e ∈ prep1
lp e es ... en− esn− en− erep en =⇒ (e, ..., en−, en−, en) ∈ lp1es...1esn−1erep1
lp e es ... en− esn− an− srep en =⇒ (e, ..., en−, an−, en) ∈ lp1es...1esn−1srep1

52 c©ISO/IEC 2002—All rights reserved

12 Syntactic transformation rules ISO/IEC 13568:2002(E)

12.2.10.2 PostfixRel

e postp =⇒ e ∈ 1postp

e elp e es ... en− esn− en erp =⇒ (e, e, ..., en−, en) ∈ 1elp1es...1esn−1erp

e elp e es ... en− esn− an srp =⇒ (e, e, ..., en−, an) ∈ 1elp1es...1esn−1srp

12.2.10.3 InfixRel

e ip e ip e ... =⇒ e ip (e o
o α) ∧ (e o

o α) ip (e o
o α) ...

The chained relation e ip e ip e ... is semantically equivalent to a conjunction of relational predicates, with
the constraint that duplicated expressions be of the same type.

e = e =⇒ e ∈ {e}
e ip e =⇒ (e, e) ∈ 1ip1

ip in the above transformation is excluded from being ∈ or =, whereas ip, ip, ... in the chained relation can be
∈ or =.

e elp e es ... en− esn− en− erep en =⇒ (e, e, ..., en−, en−, en) ∈ 1elp1es...1esn−1erep1

e elp e es ... en− esn− an− srep en =⇒ (e, e, ..., en−, an−, en) ∈ 1elp1es...1esn−1srep1

12.2.10.4 NofixRel

lp e es ... en− esn− en erp =⇒ (e, ..., en−, en) ∈ lp1es...1esn−1erp
lp e es ... en− esn− an srp =⇒ (e, ..., en−, an) ∈ lp1es...1esn−1srp

12.2.11 Function and generic operator application

All function operator applications are transformed to annotated application expressions.

All generic operator applications are transformed to annotated generic instantiation expressions.

For any particular function or generic operator application, two potential transformations are specified below,
both of which result in the same NAME. That NAME shall be one for which there is an operator template paragraph
in scope (see 12.2.8). Which of the two transformations is appropriate is determined by that operator template’s
category: function or generic respectively.

The left-hand sides of many of these transformation rules involve ExpSep phrases: they use es metavariables.
None of them use ss metavariables: in other words, only the Expression ES case of ExpSep is specified, not
the ExpressionList SS case. Where the latter case occurs in a specification, the ExpressionList shall be
transformed by the rule in 12.2.12 to an expression, and thence a transformation analogous to that specified for
the former case can be performed, differing only in that a ss appears in the function or generic name in place of
an es.

c©ISO/IEC 2002—All rights reserved 53

ISO/IEC 13568:2002(E) 12 Syntactic transformation rules

12.2.11.1 PrefixApp

Function cases

pre e =⇒ pre1 e

ln e es ... en− esn− en− ere en =⇒ ln1es...1esn−1ere1 (e, ..., en−, en−, en)
ln e es ... en− esn− an− sre en =⇒ ln1es...1esn−1sre1 (e, ..., en−, an−, en)

Generic cases

pre e =⇒ pre1 [e]
ln e es ... en− esn− en− ere en =⇒ ln1es...1esn−1ere1 [e, ..., en−, en−, en]
ln e es ... en− esn− an− sre en =⇒ ln1es...1esn−1sre1 [e, ..., en−, an−, en]

12.2.11.2 PostfixApp

Function cases

e post =⇒ 1post e

e el e es ... en− esn− en er =⇒ 1el1es...1esn−1er (e, e, ..., en−, en)
e el e es ... en− esn− an sr =⇒ 1el1es...1esn−1sr (e, e, ..., en−, an)

Generic cases

e post =⇒ 1post [e]
e el e es ... en− esn− en er =⇒ 1el1es...1esn−1er [e, e, ..., en−, en]
e el e es ... en− esn− an sr =⇒ 1el1es...1esn−1sr [e, e, ..., en−, an]

12.2.11.3 InfixApp

Function cases

e in e =⇒ 1in1 (e, e)
e el e es ... en− esn− en− ere en =⇒ 1el1es...1esn−1ere1 (e, e, ..., en−, en−, en)
e el e es ... en− esn− an− sre en =⇒ 1el1es...1esn−1sre1 (e, e, ..., en−, an−, en)

Generic cases

e in e =⇒ 1in1 [e, e]
e el e es ... en− esn− en− ere en =⇒ 1el1es...1esn−1ere1 [e, e, ..., en−, en−, en]
e el e es ... en− esn− an− sre en =⇒ 1el1es...1esn−1sre1 [e, e, ..., en−, an−, en]

54 c©ISO/IEC 2002—All rights reserved

13 Type inference rules ISO/IEC 13568:2002(E)

12.2.11.4 NofixApp

Function cases

ln e es ... en− esn− en er =⇒ ln1es...1esn−1er (e, ..., en−, en)
ln e es ... en− esn− an sr =⇒ ln1es...1esn−1sr (e, ..., en−, an)

Generic cases

ln e es ... en− esn− en er =⇒ ln1es...1esn−1er [e, ..., en−, en]
ln e es ... en− esn− an sr =⇒ ln1es...1esn−1sr [e, ..., en−, an]

12.2.12 Expression list

e, ..., en =⇒ {(1, e), ..., (n, en)}

Within an operator application, each expression list is syntactically transformed to the equivalent explicit repre-
sentation of a sequence, which is a set of pairs of position and corresponding component expression.

13 Type inference rules

13.1 Introduction

All expressions in Z are typed, allowing some of the logical anomalies that can arise when sets are defined in
terms of their properties to be avoided. An example of a Z phrase that is not well-typed is the predicate 2 ∈ 3,
because the second expression of a membership predicate is required to be a set of values, each of the same type
as the first expression. The check for well-typedness of a Z specification can be automated, by conforming to the
specification given in this clause.

The type constraints that shall be satisfied between the various parts of a Z phrase are specified by type inference
rules, of which there is one corresponding to each annotated syntax production. The type inference rules together
can be viewed as a partial function that maps a parse tree of an annotated syntax sentence to a fully annotated
parse tree of an annotated syntax sentence.

Initially, all annotations are set to variables, and these are all distinct except as set by the syntactic transformation
rules 12.2.7.1 and 12.2.10.3. A type inference rule’s type sequent is a pattern that when matched against a phrase
produces substitutions for its metavariables. Starting with a type sequent for a whole Z specification, that is
matched against the pattern in the type inference rule for a sectioned specification. The resulting substitutions
for metavariables are used to produce instantiations of the rule’s type subsequents and side-conditions. The
instantiated side-conditions include constraints that determine the environments to be used in typechecking the
type subsequents. There is no need to solve the constraints yet. Instead, type inference rules can be applied to
the generated type subsequents, each application producing zero or more new type subsequents, until no more
type subsequents remain. This produces a tree of deductions, whose leaves correspond to the atomic phrases of
the sentence, namely given types paragraphs, truth predicates, and reference expressions.

There remains a collection of constraints to be solved. There are dependencies between constraints: for example,
a constraint that checks that a name is declared in an environment cannot be solved until that environment has
been determined by other constraints. Unification is a suitable mechanism for solving constraints. A typechecker
shall not impose any additional constraints, such as on the order in which constraints are expected to be solved
[16].

c©ISO/IEC 2002—All rights reserved 55

ISO/IEC 13568:2002(E) 13 Type inference rules

For a well-typed specification, there shall be no contradictions amongst the constraints, and the solution to the
constraints shall provide values for all of the variables. If there is a contradiction amongst the constraints, there
can be no consistent assignment of annotations, and the specification is not well-typed. If the solution to the
constraints does not provide a value for a variable, there is more than one possible assignment of annotations,
and the specification is not well-typed.

EXAMPLE

empty == {}

In this declaration, the type of empty , Pα, involves an unconstrained variable.

13.2 Formal definition of type inference rules

13.2.1 Specification

13.2.1.1 Sectioned specification

{} `S sprelude o
o Γ δ `

S
s o

o Γ ... δn `
S
sn o

o Γn
`Z s o

o Γ ... sn o
o Γn

 δ = {prelude 7→ Γ}
...

δn = δn− ∪ {in− 7→ Γn−}

where in− is the name of section sn−, and none of the sections s ... sn are named prelude.

Each section is typechecked in an environment formed from preceding sections, and is annotated with an envi-
ronment that it establishes.

NOTE The section-type environment established by the prelude section is as follows.

Γ = (A, (prelude,P(GIVEN A)));
(N, (prelude,P(GIVEN A)));
(number literal 0, (prelude, (GIVEN A)));
(number literal 1, (prelude, (GIVEN A)));
(1+1, (prelude,P(((GIVEN A)× (GIVEN A))× (GIVEN A))))

If one of the sections s ... sn is named prelude, then the same type inference rule applies except that the type
subsequent for the prelude section is omitted.

13.2.2 Section

13.2.2.1 Inheriting section

β `
D
D

o
o σ ... βn− `

D
Dn

o
o σn

Λ `S ZED section i
parents i, ..., im END

D
o
o σ ... Dn

o
o σn o

o Γ

i 6∈ dom Λ
{i, ..., im} ⊆ dom Λ
γ− = if i = prelude then {} else Λ prelude
γ = γ− ∪ Λ i ∪ ... ∪ Λ im
β = γ o

9 second
disjoint 〈dom σ, ..., dom σn〉
Γ ∈ (7→)
Γ = γ ∪ {j : NAME; τ : Type | j 7→ τ ∈ σ ∪ ... ∪ σn • j 7→ (i, τ)}
β = β ∪ σ

...
βn− = βn− ∪ σn−

Taking the side-conditions in order, this type inference rule ensures that:

a) the name of the section, i, is different from that of any previous section;

b) the names in the parents list are names of known sections;

56 c©ISO/IEC 2002—All rights reserved

13 Type inference rules ISO/IEC 13568:2002(E)

c) the section environment of the prelude is included if the section is not itself the prelude;

d) the section-type environment γ is formed from those of the parents;

e) the type environment β is determined from the section-type environment γ;

f) there is no global redefinition between any pair of paragraphs of the section (the sets of names in their
signatures are disjoint);

g) a name which is common to the environments of multiple parents shall have originated in a common ancestral
section, and a name introduced by a paragraph of this section shall not also be introduced by another
paragraph or parent section (all ensured by the combined environment being a function);

h) the annotation of the section is an environment formed from those of its parents extended according to the
signatures of its paragraphs;

i) and the type environment in which a paragraph is typechecked is formed from that of the parent sections
extended with the signatures of the preceding paragraphs of this section.

NOTE 1 Ancestors need not be immediate parents, and a section cannot be amongst its own ancestors (no cycles
in the parent relation).

NOTE 2 The name of a section can be the same as the name of a variable introduced in a declaration—the two are
not confused.

13.2.3 Generic instantiation

Generic declarations can appear only at the paragraph level. The types of generic declarations shall be determined
before the constraints arising from the side-conditions of the type inference rules for references to generics can be
solved (see 13.2.6.1 and 13.2.6.2). The constraints for each paragraph shall have a unique solution without any
consideration of the constraints of following paragraphs. That is, the constraints shall be solved in per-paragraph
batches. Having determined the types of references to generic declarations, instantiations that were left implicit
are made explicit, ready for subsequent semantic relation.

NOTE This is why generic instantiation is defined here, immediately before the type inference rules for paragraphs.

13.2.3.1 Generic type instantiation

The constraints that cannot be solved until the type of a generic declaration is determined are those that involve
the operation of generic type instantiation. The generic type instantiation meta-function relates a known generic
type and a list of argument types to the type in which each reference to a generic parameter has been substi-
tuted with the corresponding argument type. Applications of the generic type instantiation meta-function are
formulated here as the juxtaposition of a generic type (parenthesized) with a square-bracketed list of argument
types.

([i, ..., in] GIVEN i) [τ, ..., τn] = GIVEN i

([i, ..., in] GENTYPE ik) [τ, ..., τn] = τk

([i, ..., in] P τ) [τ, ..., τn] = P(([i, ..., in] τ) [τ, ..., τn])
([i, ..., in] τ ′ × ...× τ ′m) [τ, ..., τn] = ([i, ..., in] τ ′) [τ, ..., τn]× ...× ([i, ..., in] τ ′m) [τ, ..., τn]

([i, ..., in] [i′ : τ ′; ...; i
′
m : τ ′m]) [τ, ..., τn]

= [i′ : [i, ..., in] τ ′ [τ, ..., τn]; ...; i′m : [i, ..., in] τ ′m [τ, ..., τn]]

13.2.3.2 Carrier set

The meta-function carrier relates a type phrase to an expression phrase denoting the carrier set of that type. It
is used for the calculation of implicit generic actuals, and also later in semantic transformation rules.

c©ISO/IEC 2002—All rights reserved 57

ISO/IEC 13568:2002(E) 13 Type inference rules

carrier (GIVEN i) = i♥ o
o P(GIVEN i)

carrier (GENTYPE i) = i♠ o
o P(GENTYPE i)

carrier (P τ) = P(carrier τ) o
o PP τ

carrier (τ × ...× τn) = (carrier τ × ...× carrier τn) o
o P(τ × ...× τn)

carrier ([in : τn; ...; in : τn]) = [in : carrier τn; ...; in : carrier τn] o
o P[in : τn; ...; in : τn]

NOTE 1 The expressions are generated with type annotations, to avoid needing to apply type inference again, and
so avoid the potential problem of type names being captured by local declarations.

NOTE 2 But for the GIVEN/GENTYPE distinction, the ♥ and ♠ strokes and the generation of type annotations, each
of these equations generates an expression that has the same textual appearance as the type.

NOTE 3 There is no equation for generic types because they appear in only the type annotation of generic axiomatic
paragraphs, and carrier is never applied there.

13.2.3.3 Implicit instantiation

The value of a reference expression that refers to a generic definition is an inferred instantiation of that generic
definition.

i o
o [i, ..., in]τ, τ ′

τ ′=([i, ..., in]τ) [α, ..., αn]
=⇒ i [carrier α, ..., carrier αn] o

o τ ′

It is semantically equivalent to the generic instantiation expression whose generic actuals are the carrier sets of
the types inferred for the generic parameters. The type τ ′ is an instantiation of the generic type τ. The types
inferred for the generic parameters are α, ..., αn. They shall all be determinable by comparison of τ with τ ′ as
suggested by the condition on the transformation. Cases where these types cannot be so determined, because the
generic type is independent of some of the generic parameters, are not well-typed.

EXAMPLE 1 The paragraph

a[X] == 1

defines a with type [X]GIVEN A. The paragraph

b == a

typechecks, giving the annotated expression a o
o [X]GIVEN A, GIVEN A. Comparison of the generic type with the

instantiated type does not determine a type for the generic parameter X , and so this specification is not well-typed.

Cases where these types are not unique (contain unconstrained variables) are not well-typed.

EXAMPLE 2 The paragraph

empty == ∅

will contain the annotated expression ∅ o
o [X]PX ,Pα, in which the type determined for the generic parameter X is

unconstrained, and so this specification is not well-typed.

13.2.4 Paragraph

13.2.4.1 Given types paragraph

Σ `D ZED [i, ..., in] END o
o σ

(
{i, ..., in} = n
σ = i : P(GIVEN i); ...; in : P(GIVEN in)

)
In a given types paragraph, there shall be no duplication of names. The annotation of the paragraph is a signature
associating the given type names with powerset types.

13.2.4.2 Axiomatic description paragraph

Σ `E e o
o τ

Σ `D AX e o
o τ END o

o σ
(τ = P[σ])

In an axiomatic description paragraph AX e END, the expression e shall be a schema. The annotation of the
paragraph is the signature of that schema.

58 c©ISO/IEC 2002—All rights reserved

13 Type inference rules ISO/IEC 13568:2002(E)

13.2.4.3 Generic axiomatic description paragraph

Σ ⊕ {i 7→ P(GENTYPE i), ..., in 7→ P(GENTYPE in)} `E e o
o τ

Σ `D GENAX [i, ..., in] e o
o τ END o

o σ

 # {i, ..., in} = n
τ = P[β]
σ = λ j : dom β • [i, ..., in] (β j)

In a generic axiomatic description paragraph GENAX [i, ..., in] e END, there shall be no duplication of names within
the generic parameters. The expression e is typechecked, in an environment overridden by the generic parameters,
and shall be a schema. The annotation of the paragraph is formed from the signature of that schema, having the
same names but associated with types that are generic.

13.2.4.4 Free types paragraph

β `E e o
o τ ... β `E e n o

o τ n
...

β `E er o
o τr ... β `E er nr o

o τr nr

Σ `D ZED

f ::= h | ... | hm |
g 〈〈e o

o τ 〉〉 |
... |

g n〈〈e n o
o τ n〉〉 &

... &
fr ::= hr | ... | hrmr |

gr 〈〈er o
o τr 〉〉 |

... |
gr nr 〈〈er nr o

o τr nr 〉〉

END o
o σ

{f, h , ..., hm , g , ..., g n ,
...,

fr, hr , ..., hrmr , gr , ..., gr nr}
= r + m1 + ...+ mr + n1 + ...+ nr

β = Σ ⊕ {f 7→ P(GIVEN f), ..., fr 7→ P(GIVEN fr)}
τ = Pα ... τ n = Pα n

...
τr = Pαr ... τr nr = Pαr nr
σ = f : P(GIVEN f);

h : GIVEN f; ...; hm : GIVEN f;
g : P(τ × GIVEN f);

...;
g n : P(τ n × GIVEN f);

...;
fr : P(GIVEN fr);

hr : GIVEN fr; ...; hrmr : GIVEN fr;
gr : P(τr × GIVEN fr);

...;
gr nr : P(τr nr × GIVEN fr)

In a free types paragraph, the names of the free types, elements and injections shall all be different. The expressions
representing the domains of the injections are typechecked in an environment overridden by the names of the free
types, and shall all be sets. The annotation of the paragraph is the signature whose names are those of all the
free types, the elements, and the injections, each associated with the corresponding type.

13.2.4.5 Conjecture paragraph

Σ `P p

Σ `D ZED `? p END o
o σ

(σ = ε)

In a conjecture paragraph ZED `? p END, the predicate p shall be well-typed. The annotation of the paragraph is
the empty signature.

13.2.4.6 Generic conjecture paragraph

Σ ⊕ {i 7→ P(GENTYPE i), ..., in 7→ P(GENTYPE in)} `P p

Σ `D ZED [i, ..., in] `? p END o
o σ

(
{i, ..., in} = n
σ = ε

)
In a generic conjecture paragraph ZED [i, ..., in] `? p END, there shall be no duplication of names within the
generic parameters. The predicate p shall be well-typed in an environment overridden by the generic parameters.
The annotation of the paragraph is the empty signature.

c©ISO/IEC 2002—All rights reserved 59

ISO/IEC 13568:2002(E) 13 Type inference rules

13.2.5 Predicate

13.2.5.1 Membership predicate

Σ `E e o
o τ Σ `E e o

o τ

Σ `P (e o
o τ) ∈ (e o

o τ)

(
τ = P τ

)
In a membership predicate e ∈ e, expression e shall be a set, and expression e shall be of the same type as
the members of set e.

13.2.5.2 Truth predicate

Σ `P true

A truth predicate is always well-typed.

13.2.5.3 Negation predicate

Σ `P p

Σ `P ¬ p
A negation predicate ¬ p is well-typed if and only if predicate p is well-typed.

13.2.5.4 Conjunction predicate

Σ `P p Σ `P p

Σ `P p ∧ p
A conjunction predicate p ∧ p is well-typed if and only if predicates p and p are well-typed.

13.2.5.5 Universal quantification predicate

Σ `E e o
o τ Σ ⊕ β `P p

Σ `P ∀ (e o
o τ) • p

(τ = P[β])

In a universal quantification predicate ∀ e • p, expression e shall be a schema, and predicate p shall be well-typed
in the environment overridden by the signature of schema e.

13.2.5.6 Unique existential quantification predicate

Σ `E e o
o τ Σ ⊕ β `P p

Σ `P ∃1 (e o
o τ) • p

(τ = P[β])

In a unique existential quantification predicate ∃1 e • p, expression e shall be a schema, and predicate p shall be
well-typed in the environment overridden by the signature of schema e.

13.2.6 Expression

13.2.6.1 Reference expression

In a reference expression, if the name is of the form ∆i and no declaration of this name yet appears in the
environment, then the following syntactic transformation is applied.

∆i
∆i 6∈dom Σ

=⇒ [i; i ′]

This syntactic transformation makes the otherwise undefined name be equivalent to the corresponding schema
construction expression, which is then typechecked.

Similarly, if the name is of the form Ξi and no declaration of this name yet appears in the environment, then the
following syntactic transformation is applied.

Ξi
Ξi 6∈dom Σ

=⇒ [i; i ′ | θ i = θ i ′]

60 c©ISO/IEC 2002—All rights reserved

13 Type inference rules ISO/IEC 13568:2002(E)

NOTE 1 The Ξ notation is deliberately not defined in terms of the ∆ notation.

NOTE 2 Type inference could be done without these syntactic transformations, but they are necessary steps in
defining the formal semantics.

NOTE 3 Only occurrences of ∆ and Ξ that are in such reference expressions are so transformed, not others such as
those in the names of declarations.

Σ `E i o
o τ

(
i ∈ dom Σ
τ = if generic type (Σ i) then Σ i, (Σ i) [α, ..., αn] else Σ i

)
In any other reference expression i, the name i shall be associated with a type in the environment. If that type
is generic, the annotation of the whole expression is a pair of both the uninstantiated type (for the Instantiation
clause to determine that this is a reference to a generic definition) and the type instantiated with new distinct
type variables (which the context shall constrain to non-generic types). Otherwise (if the type in the environment
is non-generic), that is the type of the whole expression.

NOTE 4 If the type is generic, the reference expression will be transformed to a generic instantiation expression by
the rule in 13.2.3.3. That shall be done only when the implicit instantiations have been determined via constraints
on the new type variables α, ..., αn.

13.2.6.2 Generic instantiation expression

Σ `E e o
o τ ... Σ `E en o

o τn

Σ `E i[(e o
o τ), ..., (en o

o τn)] o
o τ

i ∈ dom Σ
generic type (Σ i)
τ = Pα

...
τn = Pαn
τ = (Σ i) [α, ..., αn]

In a generic instantiation expression i [e, ..., en], the name i shall be associated with a generic type in the
environment, and the expressions e, ..., en shall be sets. That generic type shall have the same number of
parameters as there are sets. The type of the whole expression is the instantiation of that generic type by the
types of those sets’ components.

NOTE The operation of generic type instantiation is defined in 13.2.3.1.

13.2.6.3 Set extension expression

Σ `E e o
o τ ... Σ `E en o

o τn

Σ `E {(e o
o τ), ..., (en o

o τn)} o
o τ

if n > 0 then
(τ = τn

...
τn− = τn
τ = P τ)

else τ = Pα

In a set extension expression, every component expression shall be of the same type. The type of the whole
expression is a powerset of the components’ type, or a powerset of a type variable if there are no components. In
the latter case, the variable shall be constrained by the context, otherwise the specification is not well-typed.

13.2.6.4 Set comprehension expression

Σ `E e o
o τ Σ ⊕ β `E e o

o τ

Σ `E {(e o
o τ) • (e o

o τ)} o
o τ

(
τ = P[β]
τ = P τ

)
In a set comprehension expression {e • e}, expression e shall be a schema. The type of the whole expression is
a powerset of the type of expression e, as determined in an environment overridden by the signature of schema
e.

c©ISO/IEC 2002—All rights reserved 61

ISO/IEC 13568:2002(E) 13 Type inference rules

13.2.6.5 Powerset expression

Σ `E e o
o τ

Σ `E P(e o
o τ) o

o τ

(
τ = Pα
τ = P τ

)
In a powerset expression P e, expression e shall be a set. The type of the whole expression is then a powerset of
the type of expression e.

13.2.6.6 Tuple extension expression

Σ `E e o
o τ ... Σ `E en o

o τn

Σ `E ((e o
o τ), ..., (en o

o τn)) o
o τ

(
τ = τ × ...× τn

)
In a tuple extension expression (e, ..., en), the type of the whole expression is the Cartesian product of the types
of the individual component expressions.

13.2.6.7 Tuple selection expression

Σ `E e o
o τ

Σ `E (e o
o τ) . b o

o τ

 τ = α × ...× αk
b ∈ 1 . . k
τ = αb

In a tuple selection expression e . b, the type of expression e shall be a Cartesian product, and the numeric value
of NUMERAL b shall select one of its components. The type of the whole expression is the type of the selected
component.

13.2.6.8 Binding extension expression

Σ `E e o
o τ ... Σ `E en o

o τn

Σ `E 〈| i == (e o
o τ), ..., in == (en o

o τn) |〉 o
o τ

(
{i, ..., in} = n
τ = [i : τ; ...; in : τn]

)
In a binding extension expression 〈| i == e, ..., in == en |〉, there shall be no duplication amongst the bound
names. The type of the whole expression is that of a binding whose signature associates the names with the types
of the corresponding expressions.

13.2.6.9 Binding construction expression

Σ `E e o
o τ

Σ `E θ (e o
o τ) ∗ o

o τ

 τ = P[β]
∀ i : dom β • (i decor ∗, β i) ∈ Σ ∧ ¬ generic type (β i)
τ = [β]

In a binding construction expression θ e ∗, the expression e shall be a schema. Every name and type pair in its
signature, with the optional decoration added, shall be present in the environment with a non-generic type. The
type of the whole expression is that of a binding whose signature is that of the schema.

NOTE If the type in the environment were generic, the semantic transformation in 14.2.5.2 would produce a reference
expression whose implicit instantiation is not determined by this International Standard.

13.2.6.10 Binding selection expression

Σ `E e o
o τ

Σ `E (e o
o τ) . i o

o τ

(
τ = [β]
(i, τ) ∈ β

)
In a binding selection expression e . i, expression e shall be a binding, and name i shall select one of its
components. The type of the whole expression is the type of the selected component.

13.2.6.11 Application expression

Σ `E e o
o τ Σ `E e o

o τ

Σ `E (e o
o τ) (e o

o τ) o
o τ

(
τ = P(τ × τ)

)

62 c©ISO/IEC 2002—All rights reserved

13 Type inference rules ISO/IEC 13568:2002(E)

In an application expression e e, the expression e shall be a set of pairs, and expression e shall be of the
same type as the first components of those pairs. The type of the whole expression is the type of the second
components of those pairs.

13.2.6.12 Definite description expression

Σ `E e o
o τ Σ ⊕ β `E e o

o τ

Σ `E µ (e o
o τ) • (e o

o τ) o
o τ

(
τ = P[β]
τ = τ

)
In a definite description expression µ e • e, expression e shall be a schema. The type of the whole expression
is the type of expression e, as determined in an environment overridden by the signature of schema e.

13.2.6.13 Variable construction expression

Σ `E e o
o τ

Σ `E [i : (e o
o τ)] o

o τ

(
τ = Pα
τ = P[i : α]

)
In a variable construction expression [i : e], expression e shall be a set. The type of the whole expression is that
of a schema whose signature associates the name i with the type of a member of the set e.

13.2.6.14 Schema construction expression

Σ `E e o
o τ Σ ⊕ β `P p

Σ `E [(e o
o τ) | p] o

o τ

(
τ = P[β]
τ = τ

)
In a schema construction expression [e | p], expression e shall be a schema, and predicate p shall be well-typed
in an environment overridden by the signature of schema e. The type of the whole expression is the same as the
type of expression e.

13.2.6.15 Schema negation expression

Σ `E e o
o τ

Σ `E ¬ (e o
o τ) o

o τ

(
τ = P[β]
τ = τ

)
In a schema negation expression ¬ e, expression e shall be a schema. The type of the whole expression is the
same as the type of expression e.

13.2.6.16 Schema conjunction expression

Σ `E e o
o τ Σ `E e o

o τ

Σ `E (e o
o τ) ∧ (e o

o τ) o
o τ

τ = P[β]
τ = P[β]
β ≈ β
τ = P[β ∪ β]

In a schema conjunction expression e ∧ e, expressions e and e shall be schemas, and their signatures shall
be compatible. The type of the whole expression is that of the schema whose signature is the union of those of
expressions e and e.

13.2.6.17 Schema hiding expression

Σ `E e o
o τ

Σ `E (e o
o τ) \ (i, ..., in) o

o τ

 τ = P[β]
{i, ..., in} ⊆ dom β
τ = P[{i, ..., in} −C β]

In a schema hiding expression e \ (i, ..., in), expression e shall be a schema, and the names to be hidden shall
all be in the signature of that schema. The type of the whole expression is that of a schema whose signature is
computed by subtracting from the signature of expression e those pairs whose names are hidden.

c©ISO/IEC 2002—All rights reserved 63

ISO/IEC 13568:2002(E) 13 Type inference rules

13.2.6.18 Schema universal quantification expression

Σ `E e o
o τ Σ ⊕ β `

E
e o

o τ

Σ `E ∀ (e o
o τ) • (e o

o τ) o
o τ

τ = P[β]
τ = P[β]
β ≈ β
τ = P[dom β −C β]

In a schema universal quantification expression ∀ e • e, expression e shall be a schema, and expression e, in
an environment overridden by the signature of schema e, shall also be a schema, and the signatures of these two
schemas shall be compatible. The type of the whole expression is that of a schema whose signature is computed
by subtracting from the signature of e those pairs whose names are in the signature of e.

13.2.6.19 Schema unique existential quantification expression

Σ `E e o
o τ Σ ⊕ β `

E
e o

o τ

Σ `E ∃1 (e o
o τ) • (e o

o τ) o
o τ

τ = P[β]
τ = P[β]
β ≈ β
τ = P[dom β −C β]

In a schema unique existential quantification expression ∃1 e • e, expression e shall be a schema, and expression
e, in an environment overridden by the signature of schema e, shall also be a schema, and the signatures of
these two schemas shall be compatible. The type of the whole expression is that of a schema whose signature is
computed by subtracting from the signature of e those pairs whose names are in the signature of e.

13.2.6.20 Schema renaming expression

Σ `E e o
o τ

Σ `E (e o
o τ)[j / i, ..., jn / in] o

o τ

{i, ..., in} = n
τ = P[β]
β = {j 7→ i, ..., jn 7→ in} o

9 β ∪ {i, ..., in} −C β
τ = P[β]
β ∈ (7→)

In a schema renaming expression e [j / i, ..., jn / in], there shall be no duplicates amongst the old names
i, ..., in. Expression e shall be a schema. The type of the whole expression is that of a schema whose signature
is like that of expression e but with the new names in place of corresponding old names. Declarations that are
merged by the renaming shall have the same type.

NOTE Old names need not be in the signature of the schema. This is so as to permit renaming to distribute over
other notations such as disjunction.

13.2.6.21 Schema precondition expression

Σ `E e o
o τ

Σ `E pre (e o
o τ) o

o τ

(
τ = P[β]
τ = P[{i, j : NAME | j ∈ dom β ∧ (j = i decor ′ ∨ j = i decor !) • j} −C β]

)
In a schema precondition expression pre e, expression e shall be a schema. The type of the whole expression is
that of a schema whose signature is computed by subtracting from the signature of e those pairs whose names
have primed or shrieked decorations.

13.2.6.22 Schema composition expression

Σ `E e o
o τ Σ `E e o

o τ

Σ `E (e o
o τ) o

9 (e o
o τ) o

o τ

τ = P[β]
τ = P[β]
match = {i : dom β | i decor ′ ∈ dom β • i}
β = {i : match • i decor ′} −C β
β = match −C β
β ≈ β
{i : match • i 7→ β(i decor ′)} ≈ {i : match • i 7→ β i}
τ = P[β ∪ β]

64 c©ISO/IEC 2002—All rights reserved

13 Type inference rules ISO/IEC 13568:2002(E)

In a schema composition expression e o
9 e, expressions e and e shall be schemas. Let match be the set of

names in schema e for which there are matching primed names in schema e. Let β be the signature formed
from the components of e excluding the matched primed components. Let β be the signature formed from the
components of e excluding the matched unprimed components. Signatures β and β shall be compatible. The
types of the excluded matched pairs of components shall be the same. The type of the whole expression is that
of a schema whose signature is the union of β and β.

13.2.6.23 Schema piping expression

Σ `E e o
o τ Σ `E e o

o τ

Σ `E (e o
o τ)>> (e o

o τ) o
o τ

τ = P[β]
τ = P[β]
match = {i : NAME | i decor ! ∈ dom β ∧ i decor ? ∈ dom β • i}
β = {i : match • i decor !} −C β
β = {i : match • i decor ?} −C β
β ≈ β
{i : match • i 7→ β(i decor !)} ≈ {i : match • i 7→ β (i decor ?)}
τ = P[β ∪ β]

In a schema piping expression e>>e, expressions e and e shall be schemas. Let match be the set of names for
which there are matching shrieked names in schema e and queried names in schema e. Let β be the signature
formed from the components of e excluding the matched shrieked components. Let β be the signature formed
from the components of e excluding the matched queried components. Signatures β and β shall be compatible.
The types of the excluded matched pairs of components shall be the same. The type of the whole expression is
that of a schema whose signature is the union of β and β.

13.2.6.24 Schema decoration expression

Σ `E e o
o τ

Σ `E (e o
o τ) + o

o τ

(
τ = P[β]
τ = P[{i : dom β • i decor + 7→ β i}]

)
In a schema decoration expression e +, expression e shall be a schema. The type of the whole expression is that
of a schema whose signature is like that of e but with the stroke appended to each of its names.

13.3 Summary of scope rules

NOTE Here is an informal explanation of the scope rules implied by the type inference rules in 13.2.

A scope is static: it depends on only the structure of the text, not on the value of any predicate or expression.

A declaration can be either: a given type, a free type, a formal generic parameter, or an instance of Declaration
usually within a DeclPart.

The scopes of given types and free types (which occur only at paragraph level), and Declarations at paragraph level
(such as those of schema definitions and those of the outermost DeclPart in axiomatic descriptions), are the whole
of the rest of the section and any sections of which that is an ancestor.

Redeclaration at paragraph level of any name already declared at paragraph level is prohibited. Redeclaration at an
inner level of any name already declared with larger scope makes a hole in the scope of the outer declaration.

In a free types paragraph, the scopes of the declarations of the free types include the right-hand sides of the free type
declarations, whereas the scopes of the declarations of the elements and injections of the free types do not include
the free types paragraph itself.

The scope of a formal generic parameter is the rest of the paragraph in which it appears.

A DeclPart is not in the scope of its declarations.

The declarations of a schema inclusion declaration are distinct from those in the signature of the schema itself, and

c©ISO/IEC 2002—All rights reserved 65

ISO/IEC 13568:2002(E) 14 Semantic transformation rules

so have separate scopes.

A name may be declared more than once within a DeclPart provided the types of the several declarations are identical.
In this case, the declarations are merged, so that they share the same scope, and the corresponding properties are
conjoined.

The scope of the declarations in the DeclPart of a quantification, set comprehension, function construction, definite
description or schema construction expression is the | part of the SchemaText and any • part of that construct.

14 Semantic transformation rules

14.1 Introduction

The semantic transformation rules define some annotated notations as being equivalent to other annotated no-
tations. The only sentences of concern here are ones that are already known to be well-formed syntactically
and well-typed. These semantic transformations are transformations that could not appear earlier as syntactic
transformations because they depend on type annotations or generic instantiations or are applicable only to parse
trees of phrases that are not in the concrete syntax.

Some semantic transformation rules generate other transformable notation, though exhaustive application of these
rules always terminates. They introduce no type errors. It is not intended that type inference be repeated on the
generated notation, though type annotations are needed on that notation for the semantic relations. Nevertheless,
the manipulation of type annotations is not made explicit throughout these rules, as that would be obfuscatory
and can easily be derived by the reader. Indeed, some rules exploit concrete notation for brevity and clarity.

The semantic transformation rules are listed in the same order as the corresponding productions of the annotated
syntax.

All applications of transformation rules that generate new declarations shall choose the names of those declarations
to be such that they do not capture references.

14.2 Formal definition of semantic transformation rules

14.2.1 Specification

There are no semantic transformation rules for specifications.

14.2.2 Section

There are no semantic transformation rules for sections.

14.2.3 Paragraph

14.2.3.1 Free types paragraph

A free types paragraph is semantically equivalent to the sequence of given type paragraph and axiomatic definition
paragraph defined here.

NOTE 1 This exploits notation that is not present in the annotated syntax for the purpose of abbreviation.

ZED
f ::= h | ... | hm | g 〈〈e 〉〉 | ... | g n〈〈e n〉〉
& ... &
fr ::= hr | ... | hrmr | gr 〈〈er 〉〉 | ... | gr nr 〈〈er nr 〉〉
END

=⇒

ZED
[f, ..., fr]
END

66 c©ISO/IEC 2002—All rights reserved

14 Semantic transformation rules ISO/IEC 13568:2002(E)

AX
h , ..., hm : f
...
hr , ..., hrmr : fr
g : P(e × f); ...; g n : P(e n × f)
...
gr : P(er × fr); ...; gr nr : P(er nr × fr)
|
(∀ u : e • ∃1 x : g • x . 1 = u) ∧ ... ∧ (∀ u : e n • ∃1 x : g n • x . 1 = u)
... ∧
(∀ u : er • ∃1 x : gr • x . 1 = u) ∧ ... ∧ (∀ u : er nr • ∃1 x : gr nr • x . 1 = u)

(∀ u, v : e | g u = g v • u = v) ∧ ... ∧ (∀ u, v : e n | g nu = g nv • u = v)
... ∧
(∀ u, v : er | gr u = gr v • u = v) ∧ ... ∧ (∀ u, v : er nr | gr nru = gr nrv • u = v)

∀ b, b : N •
(∀ w : f |

(b = 1 ∧ w = h ∨ ... ∨ b = m1 ∧ w = hm ∨
b = m1 + 1 ∧ w ∈ {x : g • x . 2} ∨ ... ∨ b = m1 + n1 ∧ w ∈ {x : g n • x . 2})

∧ (b = 1 ∧ w = h ∨ ... ∨ b = m1 ∧ w = hm ∨
b = m1 + 1 ∧ w ∈ {x : g • x . 2} ∨ ... ∨ b = m1 + n1 ∧ w ∈ {x : g n • x . 2}) •

b = b) ∧
... ∧
(∀ w : fr |

(b = 1 ∧ w = hr ∨ ... ∨ b = mr ∧ w = hrmr ∨
b = mr + 1 ∧ w ∈ {x : gr • x . 2} ∨ ... ∨ b = mr + nr ∧ w ∈ {x : gr nr • x . 2})

∧ (b = 1 ∧ w = hr ∨ ... ∨ b = mr ∧ w = hrmr ∨
b = mr + 1 ∧ w ∈ {x : gr • x . 2} ∨ ... ∨ b = mr + nr ∧ w ∈ {x : gr nr • x . 2}) •

b = b)

∀ w : P f; ...; wr : P fr |
h ∈ w ∧ ... ∧ hm ∈ w ∧
... ∧
hr ∈ wr ∧ ... ∧ hrmr ∈ wr ∧
(∀ y : (µ f == w; ...; fr == wr • e) • g y ∈ w) ∧
... ∧ (∀ y : (µ f == w; ...; fr == wr • e n) • g ny ∈ w) ∧
... ∧
(∀ y : (µ f == w; ...; fr == wr • er) • gr y ∈ wr) ∧
... ∧ (∀ y : (µ f == w; ...; fr == wr • er nr) • gr nry ∈ wr) •

w = f ∧ ... ∧ wr = fr
END

The type names are introduced by the given types paragraph. The elements are declared as members of their cor-
responding free types. The injections are declared as functions from values in their domains to their corresponding
free type.

The first of the four blank-line separated predicates is the total functionality property. It ensures that for every
injection, the injection is functional at every value in its domain.

c©ISO/IEC 2002—All rights reserved 67

ISO/IEC 13568:2002(E) 14 Semantic transformation rules

The second of the four blank-line separated predicates is the injectivity property. It ensures that for every
injection, any pair of values in its domain for which the injection returns the same value shall be a pair of equal
values (hence the name injection).

The third of the four blank-line separated predicates is the disjointness property. It ensures that for every free
type, every pair of values of the free type are equal only if they are the same element or are returned by application
of the same injection to equal values.

The fourth of the four blank-line separated predicates is the induction property. It ensures that for every free
type, its members are its elements, the values returned by its injections, and nothing else.

The generated µ expressions in the induction property are intended to effect substitutions of all references to the
free type names, including any such references within generic instantiation lists in the e expressions.

NOTE 2 That is why this is a semantic transformation not a syntactic one: all implicit generic instantiations shall
have been made explicit before it is applied.

NOTE 3 The right-hand side of this transformation could have been expressed using notation from the mathematical
toolkit, as follows, but for the desire to define the Z core language separately from the mathematical toolkit.

ZED

[f, ..., fr]

END

AX

h , ..., hm : f
...

hr , ..., hrmr : fr
g : e � f; ...; g n : e n � f
...

gr : er � fr; ...; gr nr : er nr � fr
|
disjoint〈{h }, ..., {hm}, ran g , ..., ran g n〉
...

disjoint〈{hr }, ..., {hrmr}, ran gr , ..., ran gr nr 〉
∀ w : P f; ...; wr : P fr |

{h , ..., hm} ∪ g (| µ f == w; ...; fr == wr • e |)
∪... ∪ g n(| µ f == w; ...; fr == wr • e n |) ⊆ w ∧

... ∧
{hr , ..., hrmr} ∪ gr (| µ f == w; ...; fr == wr • er |)

∪... ∪ gr nr (| µ f == w; ...; fr == wr • er nr |) ⊆ wr •
w = f ∧ ... ∧ wr = fr

END

14.2.4 Predicate

14.2.4.1 Unique existential predicate

The unique existential quantification predicate ∃1 e • p is true if and only if there is exactly one value for e for
which p is true.

∃1 e • p =⇒ ¬ (∀ e • ¬ (p ∧ (∀ [e | p]./ • θ e = θ e ./)))

68 c©ISO/IEC 2002—All rights reserved

14 Semantic transformation rules ISO/IEC 13568:2002(E)

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

∃1 e • p =⇒ ∃ e • p ∧ (∀ [e | p]./ • θ e = θ e ./)

It is semantically equivalent to there existing at least one value for e for which p is true and all those values for
which it is true being the same.

14.2.5 Expression

14.2.5.1 Tuple selection expression

The value of the tuple selection expression e . b is the b’th component of the tuple that is the value of e.

(e o
o τ × ...× τn) . b =⇒ {i : carrier (τ × ...× τn) •

(i, µ i : carrier τ; ...; in : carrier τn | i = (i, ..., in) • ib)} e

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

(e o
o τ × ...× τn) . b =⇒ (λ i : carrier (τ × ...× τn) •

µ i : carrier τ; ...; in : carrier τn | i = (i, ..., in) • ib) e

It is semantically equivalent to the function construction, from tuples of the Cartesian product type to the selected
component of the tuple b, applied to the particular tuple e.

14.2.5.2 Binding construction expression

The value of the binding construction expression θ e ∗ is the binding whose names are those in the signature of
schema e and whose values are those of the same names with the optional decoration appended.

θ e ∗ o
o [i : τ; ...; in : τn] =⇒ 〈| i == i decor ∗, ..., in == in decor ∗ |〉

It is semantically equivalent to the binding extension expression whose value is that binding.

14.2.5.3 Binding selection expression

The value of the binding selection expression e . i is that value associated with i in the binding that is the value
of e.

(e o
o [σ]) . i =⇒ {carrier [σ] • (chartuple (carrier [σ]), i)} e

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

(e o
o [σ]) . i =⇒ (λ carrier [σ] • i) e

It is semantically equivalent to the function construction expression, from bindings of the schema type of e, to
the value of the selected name i, applied to the particular binding e.

14.2.5.4 Application expression

The value of the application expression e e is the sole value associated with e in the relation e.

e e o
o τ =⇒ (µ i : carrier τ | (e, i) ∈ e • i)

It is semantically equivalent to that sole range value i such that the pair (e, i) is in the set of pairs that is the
value of e. If there is no value or more than one value associated with e, then the application expression has a
value but what it is is not specified.

c©ISO/IEC 2002—All rights reserved 69

ISO/IEC 13568:2002(E) 14 Semantic transformation rules

14.2.5.5 Schema hiding expression

The value of the schema hiding expression e \ (i, ..., in) is that schema whose signature is that of schema e
minus the hidden names, and whose bindings have the same values as those in schema e.

(e o
o P[σ]) \ (i, ..., in) =⇒ ¬ (∀ i : carrier (σ i); ...; in : carrier (σ in) • ¬ e)

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

(e o
o P[σ]) \ (i, ..., in) =⇒ ∃ i : carrier (σ i); ...; in : carrier (σ in) • e

It is semantically equivalent to the schema existential quantification of the hidden names i, ..., in from the schema
e.

14.2.5.6 Schema unique existential quantification expression

The value of the schema unique existential quantification expression ∃1 e • e is the set of bindings of schema
e restricted to exclude names that are in the signature of e, for at least one binding of the schema e.

∃1 e • e =⇒ ¬ (∀ e • ¬ (e ∧ (∀ [e | e]./ • θ e = θ e
./)))

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

∃1 e • e =⇒ ∃ e • e ∧ (∀ [e | e]./ • θ e = θ e
./)

It is semantically equivalent to a schema existential quantification expression, analogous to the unique existential
quantification predicate transformation.

14.2.5.7 Schema precondition expression

The value of the schema precondition expression pre e is that schema which is like schema e but without its
primed and shrieked components.

pre(e o
o P[σ]) o

o P[σ] =⇒ ¬ (∀ carrier [σ \ σ] • ¬ e)

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

pre(e o
o P[σ]) o

o P[σ] =⇒ ∃ carrier [σ \ σ] • e

It is semantically equivalent to the existential quantification of the primed and shrieked components from the
schema e.

14.2.5.8 Schema composition expression

The value of the schema composition expression e o
9 e is that schema representing the operation of doing the

operations represented by schemas e and e in sequence.

(e o
o P[σ]) o

9 (e o
o P[σ]) o

o P[σ]
=⇒

¬ (∀ e./ • ¬ (¬ (∀ e • ¬ [e; e./ | θ e = θ e./])
∧ ¬ (∀ e • ¬ [e; e./ | θ e = θ e./])))

where e == carrier [{i : NAME; τ : Type | i decor ′ 7→ τ ∈ σ • i decor ′ 7→ τ}]
and e == carrier [{i : NAME; τ : Type | i 7→ τ ∈ σ • i 7→ τ}]
and e./ == (e)./

70 c©ISO/IEC 2002—All rights reserved

15 Semantic relations ISO/IEC 13568:2002(E)

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

(e o
o P[σ]) o

9 (e o
o P[σ]) o

o P[σ]
=⇒

∃ e./ • (∃ e • [e; e
./ | θ e = θ e./])

∧ (∃ e • [e; e
./ | θ e = θ e./])

where e == carrier [{i : NAME; τ : Type | i decor ′ 7→ τ ∈ σ • i decor ′ 7→ τ}]
and e == carrier [{i : NAME; τ : Type | i 7→ τ ∈ σ • i 7→ τ}]
and e./ == (e)

./

It is semantically equivalent to the existential quantification of the matched pairs of primed components of e
and unprimed components of e, with those matched pairs being equated.

14.2.5.9 Schema piping expression

The value of the schema piping expression e >> e is that schema representing the operation formed from the
two operations represented by schemas e and e with the outputs of e identified with the inputs of e.

(e o
o P[σ])>> (e o

o P[σ]) o
o P[σ]

=⇒
¬ (∀ e./ • ¬ (¬ (∀ e • ¬ [e; e./ | θ e = θ e./])

∧ ¬ (∀ e • ¬ [e; e./ | θ e = θ e./])))
where e == carrier [{i : NAME; τ : Type | i decor ! 7→ τ ∈ σ • i decor ! 7→ τ}]

and e == carrier [{i : NAME; τ : Type | i decor ? 7→ τ ∈ σ • i decor ? 7→ τ}]
and e./ == (e)./

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

(e o
o P[σ])>> (e o

o P[σ]) o
o P[σ]

=⇒
∃ e./ • (∃ e • [e; e

./ | θ e = θ e./])
∧ (∃ e • [e; e

./ | θ e = θ e./])

where e == carrier [{i : NAME; τ : Type | i decor ! 7→ τ ∈ σ • i decor ! 7→ τ}]
and e == carrier [{i : NAME; τ : Type | i decor ? 7→ τ ∈ σ • i decor ? 7→ τ}]
and e./ == (e)

./

It is semantically equivalent to the existential quantification of the matched pairs of shrieked components of e
and queried components of e, with those matched pairs being equated.

14.2.5.10 Schema decoration expression

The value of the schema decoration expression e + is that schema whose bindings are like those of the schema e
except that their names have the addition stroke +.

(e o
o P[i : τ; ...; in : τn])+ =⇒ e [i decor + / i, ..., in decor + / in]

It is semantically equivalent to the schema renaming where decorated names rename the original names.

15 Semantic relations

15.1 Introduction

The semantic relations define the meaning of the remaining annotated notation (that not defined by semantic
transformation rules) by relation to sets of models in ZF set theory. The only sentences of concern here are ones
that are already known to be well-formed syntactically and well-typed.

This clause defines the meaning of a Z specification in terms of the semantic values that its global variables may
take consistent with the constraints imposed on them by the specification.

This definition is loose: it leaves the values of ill-formed definite description expressions undefined. It is otherwise
tight: it specifies the values of all expressions that do not depend on values of ill-formed definite descriptions,

c©ISO/IEC 2002—All rights reserved 71

ISO/IEC 13568:2002(E) 15 Semantic relations

every predicate is either true or false, and every expression denotes a value. The looseness leaves the values
of undefined expressions unspecified. Any particular semantics conforms to this International Standard if it is
consistent with this loose definition.

EXAMPLE The predicate (µ x : { }) ∈ T could be either true or false depending on the treatment of undefinedness.

NOTE 1 Typical specifications contain expressions that in some circumstances have undefined values. In those
circumstances, those expressions ought not to affect the meaning of the specification. This definition is then sufficiently
tight.

NOTE 2 Alternative treatments of undefined expressions include one or more bottoms outside of the carrier sets,
or undetermined values from within the carrier sets.

15.2 Formal definition of semantic relations

15.2.1 Specification

15.2.1.1 Sectioned specification

[[s ... sn]]Z = ([[ZED section prelude parents END ...]]S o
9 [[s]]S o

9 ... o
9 [[sn]]S) ∅

The meaning of the Z specification s ... sn is the function from sections’ names to their sets of models formed
by starting with the empty function and extending that with a maplet from a section’s name to its set of models
for each section in the specification, starting with the prelude.

To determine [[ZED section prelude parents END ...]]Z another prelude shall not be prefixed onto it.

NOTE The meaning of a specification is not the meaning of its last section, so as to permit several meaningful units
within a single document.

15.2.2 Section

15.2.2.1 Inheriting section

The prelude section, as defined in clause 11, is treated specially, as it is the only one that does not have prelude
as an implicit parent.

[[ZED section prelude parents END D ... Dn]]S

=
λ T : SectionModels • {prelude 7→ ([[D]]D o

9 ... o
9 [[Dn]]D) (| {∅} |)}

The meaning of the prelude section is given by that constant function which, whatever function from sections’
names and their sets of models it is given, returns the singleton set mapping the name prelude to its set of models.
The set of models is that to which the set containing an empty model is related by the composition of the relations
between models that denote the meanings of each of the prelude’s paragraphs—see clause 11 for details of those
paragraphs.

NOTE One model of the prelude section can be written as follows.

{A 7→ A,

N 7→ N,

number literal 0 7→ 0,

number literal 1 7→ 1,

+ 7→ {((0, 0), 0), ((0, 1), 1), ((1, 0), 1), ((1, 1), 2), ...}}

The behaviour of (+) on non-natural numbers, e.g. reals, has not been defined at this point, so the set of models
for the prelude section includes alternatives for every possible extended behaviour of addition.

72 c©ISO/IEC 2002—All rights reserved

15 Semantic relations ISO/IEC 13568:2002(E)

[[ZED section i parents i, ..., im END D ... Dn]]S

=
λ T : SectionModels • T ∪ {i 7→

([[D]]D o
9...o9[[Dn]]D) (| {M : T prelude; M : T i; ...; Mm : T im; M : Model | M = M∪M∪...∪Mm • M} |)}

The meaning of a section other than the prelude is the extension of a function from sections’ names to their sets
of models with a maplet from the given section’s name to its set of models. The given section’s set of models
is that to which the union of the models of the section’s parents is related by the composition of the relations
between models that denote the meanings of each of the section’s paragraphs.

15.2.3 Paragraph

15.2.3.1 Given types paragraph

The given types paragraph ZED [i, ..., in] END introduces unconstrained global names.

[[ZED [i, ..., in] END]]D = {M : Model ; w1, ..., wn : W
• M 7→ M ∪ {i 7→ w1, ..., in 7→ wn}

∪ {i decor ♥ 7→ w1, ..., in decor ♥ 7→ wn}}

It relates a model M to that model extended with associations between the names of the given types and semantic
values chosen to represent their carrier sets. Associations for names decorated with the reserved stroke ♥ are also
introduced, so that references to them from given types (see 15.2.6.1) can avoid being captured.

15.2.3.2 Axiomatic description paragraph

The axiomatic description paragraph AX e END introduces global names and constraints on their values.

[[AX e END]]D = {M : Model ; t : W | t ∈ [[e]]EM • M 7→ M ∪ t}

It relates a model M to that model extended with a binding t of the schema that is the value of e in model M.

15.2.3.3 Generic axiomatic description paragraph

The generic axiomatic description paragraph GENAX [i, ..., in] e END introduces global names and constraints on
their values, with generic parameters that have to be instantiated (by sets) whenever those names are referenced.

[[GENAX [i, ..., in] (e o
o P[j : τ; ...; jm : τm]) END]]D =

{M : Model ; u : W ↑ n →W

| ∀ w1, ..., wn : W • ∃ w : W •
u (w1, ..., wn) ∈ w
∧ (M ⊕ {i 7→ w1, ..., in 7→ wn} ∪ {i decor ♠ 7→ w1, ..., in decor ♠ 7→ wn}) 7→ w ∈ [[e]]E

• M 7→ M ∪ λ y : {j, ..., jm} • λ x : W ↑ n • u x y}

Given a model M and generic argument sets w1, ..., wn , the semantic value of the schema e in that model
overridden by the association of the generic parameter names with those sets is w . All combinations of generic
argument sets are considered. The function u maps the generic argument sets to a binding in the schema w . The
paragraph relates the model M to that model extended with the binding that associates the names of the schema
e (namely j, ..., jm) with the corresponding value in the binding resulting from application of u to arbitrary
instantiating sets x . Associations for names decorated with the reserved stroke ♠ are also introduced whilst
determining the semantic value of e, so that references to them from generic types (see 15.2.6.2) can avoid being
captured.

15.2.3.4 Conjecture paragraph

The conjecture paragraph ZED `? p END expresses a property that may logically follow from the specification. It
may be a starting point for a proof.

[[ZED `? p END]]D = id Model

c©ISO/IEC 2002—All rights reserved 73

ISO/IEC 13568:2002(E) 15 Semantic relations

It relates a model to itself: the truth of p in a model does not affect the meaning of the specification.

15.2.3.5 Generic conjecture paragraph

The generic conjecture paragraph ZED [i, ..., in] `? p END expresses a generic property that may logically follow
from the specification. It may be a starting point for a proof.

[[ZED [i, ..., in] `? p END]]D = id Model

It relates a model to itself: the truth of p in a model does not affect the meaning of the specification.

15.2.4 Predicate

The set of models defining the meaning of a predicate is determined from the values of its constituent expressions.
The set therefore depends on the particular treatment of undefinedness.

15.2.4.1 Membership predicate

The membership predicate e ∈ e is true if and only if the value of e is in the set that is the value of e.

[[e ∈ e]]P = {M : Model | [[e]]EM ∈ [[e]]EM • M}

In terms of the semantic universe, it is true in those models in which the semantic value of e is in the semantic
value of e, and is false otherwise.

15.2.4.2 Truth predicate

A truth predicate is always true.

[[true]]P = Model

In terms of the semantic universe, it is true in all models.

15.2.4.3 Negation predicate

The negation predicate ¬ p is true if and only if p is false.

[[¬ p]]P = Model \ [[p]]P

In terms of the semantic universe, it is true in all models except those in which p is true.

15.2.4.4 Conjunction predicate

The conjunction predicate p ∧ p is true if and only if p and p are true.

[[p ∧ p]]P = [[p]]P ∩ [[p]]P

In terms of the semantic universe, it is true in those models in which both p and p are true, and is false
otherwise.

15.2.4.5 Universal quantification predicate

The universal quantification predicate ∀ e • p is true if and only if predicate p is true for all bindings of the
schema e.

[[∀ e • p]]P = {M : Model | ∀ t : [[e]]EM • M ⊕ t ∈ [[p]]P • M}

In terms of the semantic universe, it is true in those models for which p is true in that model overridden by all
bindings in the semantic value of e, and is false otherwise.

15.2.5 Expression

Every expression has a semantic value, specified by the following semantic relations. The value of an undefined
definite description expression is left loose, and hence the values of larger expressions containing undefined values
are also loosely specified.

74 c©ISO/IEC 2002—All rights reserved

15 Semantic relations ISO/IEC 13568:2002(E)

15.2.5.1 Reference expression

The value of the reference expression that refers to a non-generic definition i is the value of the declaration to
which it refers.

[[i]]E = λ M : Model • M i

In terms of the semantic universe, its semantic value, given a model M, is that associated with the name i in M.

15.2.5.2 Generic instantiation expression

The value of the generic instantiation expression i [e, ..., en] is a particular instance of the generic referred to by
name i.

[[i [e, ..., en]]]E = λ M : Model • M i ([[e]]EM, ..., [[en]]EM)

In terms of the semantic universe, its semantic value, given a model M, is the generic value associated with the
name i in M instantiated with the semantic values of the instantiation expressions in M.

15.2.5.3 Set extension expression

The value of the set extension expression { e, ..., en} is the set containing the values of its expressions.

[[{ e, ..., en}]]E = λ M : Model • {[[e]]EM, ..., [[en]]EM}

In terms of the semantic universe, its semantic value, given a model M, is the set whose members are the semantic
values of the member expressions in M.

15.2.5.4 Set comprehension expression

The value of the set comprehension expression { e • e} is the set of values of e for all bindings of the schema
e.

[[{ e • e}]]E = λ M : Model • {t : [[e]]EM • [[e]]E (M ⊕ t)}

In terms of the semantic universe, its semantic value, given a model M, is the set of values of e in M overridden
with a binding value of e in M.

15.2.5.5 Powerset expression

The value of the powerset expression P e is the set of all subsets of the set that is the value of e.

[[P e]]E = λ M : Model • P ([[e]]EM)

In terms of the semantic universe, its semantic value, given a model M, is the powerset of values of e in M.

15.2.5.6 Tuple extension expression

The value of the tuple extension expression (e, ..., en) is the tuple containing the values of its expressions in
order.

[[(e, ..., en)]]E = λ M : Model • ([[e]]EM, ..., [[en]]EM)

In terms of the semantic universe, its semantic value, given a model M, is the tuple whose components are the
semantic values of the component expressions in M.

15.2.5.7 Binding extension expression

The value of the binding extension expression 〈| i == e, ..., in == en |〉 is the binding whose names are as
enumerated and whose values are those of the associated expressions.

[[〈| i == e, ..., in == en |〉]]E = λ M : Model • {i 7→ [[e]]EM, ..., in 7→ [[en]]EM}

In terms of the semantic universe, its semantic value, given a model M, is the set of pairs enumerated by its
names each associated with the semantic value of the associated expression in M.

c©ISO/IEC 2002—All rights reserved 75

ISO/IEC 13568:2002(E) 15 Semantic relations

15.2.5.8 Definite description expression

The value of the definite description expression µ e • e is the sole value of e that arises whichever binding is
chosen from the set that is the value of schema e.

{M : Model ; t : W
| t ∈ [[e]]EM
∧ (∀ t : [[e]]EM • [[e]]E (M ⊕ t) = [[e]]E (M ⊕ t))

• M 7→ [[e]]E (M ⊕ t)} ⊆ [[µ e • e]]E

In terms of the semantic universe, its semantic value, given a model M in which the value of e in that model
overridden by a binding of the schema e is the same regardless of which binding is chosen, is that value of e.
In other models, it has a semantic value, but this loose definition of the semantics does not say what it is.

15.2.5.9 Variable construction expression

The value of the variable construction expression [i : e] is the set of all bindings whose sole name is i and whose
associated value is in the set that is the value of e.

[[[i : e]]]E = λ M : Model • {w : [[e]]EM • {i 7→ w}}

In terms of the semantic universe, its semantic value, given a model M, is the set of all singleton bindings (sets
of pairs) of the name i associated with a value from the set that is the semantic value of e in M.

15.2.5.10 Schema construction expression

The value of the schema construction expression [e | p] is the set of all bindings of schema e that satisfy the
constraints of predicate p.

[[[e | p]]]E = λ M : Model • {t : [[e]]EM | M ⊕ t ∈ [[p]]P • t}

In terms of the semantic universe, its semantic value, given a model M, is the set of the bindings (sets of pairs)
that are members of the semantic value of schema e in M such that p is true in the model M overridden with
that binding.

15.2.5.11 Schema negation expression

The value of the schema negation expression ¬ e is that set of bindings that are of the same type as those in
schema e but that are not in schema e.

[[¬ e o
o P τ]]E = λ M : Model • {t : [[τ]]TM | ¬ t ∈ [[e]]EM • t}

In terms of the semantic universe, its semantic value, given a model M, is the set of the bindings (sets of pairs)
that are members of the semantic value of the carrier set of schema e in M such that those bindings are not
members of the semantic value of schema e in M.

15.2.5.12 Schema conjunction expression

The value of the schema conjunction expression e ∧ e is the schema resulting from merging the signatures of
schemas e and e and conjoining their constraints.

[[e ∧ e o
o P τ]]E = λ M : Model • {t : [[τ]]TM; t : [[e]]EM; t : [[e]]EM | t ∪ t = t • t}

In terms of the semantic universe, its semantic value, given a model M, is the set of the unions of the bindings
(sets of pairs) in the semantic values of e and e in M.

15.2.5.13 Schema universal quantification expression

The value of the schema universal quantification expression ∀ e • e is the set of bindings of schema e restricted
to exclude names that are in the signature of e, for all bindings of the schema e.

[[∀ e • e o
o P τ]]E = λ M : Model • {t : [[τ]]TM | ∀ t : [[e]]EM • t ∪ t ∈ [[e]]E (M ⊕ t) • t}

76 c©ISO/IEC 2002—All rights reserved

15 Semantic relations ISO/IEC 13568:2002(E)

In terms of the semantic universe, its semantic value, given a model M, is the set of the bindings (sets of pairs)
in the semantic values of the carrier set of the type of the entire schema universal quantification expression in
M, for which the union of the bindings (sets of pairs) in e and in the whole expression is in the set that is the
semantic value of e in the model M overridden with the binding in e.

15.2.5.14 Schema renaming expression

The value of the schema renaming expression e [j / i, ..., jn / in] is that schema whose bindings are like those
of schema e except that some of its names have been replaced by new names, possibly merging components.

[[e [j / i, ..., jn / in]]]E = λ M : Model •
{t : [[e]]EM; t : W |

t = {j 7→ i, ..., jn 7→ in} o
9 t ∪ {i, ..., in} −C t

∧ t ∈ (7→)
• t}

In terms of the semantic universe, its semantic value, given a model M, is the set of the bindings (sets of pairs)
in the semantic value of e in M with the new names replacing corresponding old names. Where components are
merged by the renaming, those components shall have the same value.

15.2.6 Type

The value of a type is its carrier set.

NOTE 1 For an expression e with a defined value, [[e o
o τ]]E ∈ [[τ]]T .

NOTE 2 The value of a generic type, [[[i, ..., in] τ]]T , is never needed, and so is not defined.

NOTE 3 [[τ]]TM differs from carrier τ in that the former application returns a semantic value whereas the latter
application returns an annotated parse tree.

15.2.6.1 Given type

[[GIVEN i]]T = λ M : Model • M (i decor ♥)

The semantic value of the given type GIVEN i, given a model M, is the semantic value associated with the given
type name i in M.

15.2.6.2 Generic parameter type

[[GENTYPE i]]T = λ M : Model • M (i decor ♠)

The semantic value of the generic type GENTYPE i, given a model M, is the semantic value associated with generic
parameter name i in M.

15.2.6.3 Powerset type

[[P τ]]T = λ M : Model • P ([[τ]]TM)

The semantic value of the set type P τ, given a model M, is the powerset of the semantic value of type τ in M.

15.2.6.4 Cartesian product type

[[τ × ...× τn]]T = λ M : Model • ([[τ]]TM)× ...× ([[τn]]TM)

The semantic value of the Cartesian product type τ × ...× τn, given a model M, is the Cartesian product of the
semantic values of types τ... τn in M.

c©ISO/IEC 2002—All rights reserved 77

ISO/IEC 13568:2002(E) 15 Semantic relations

15.2.6.5 Schema type

[[[i : τ; ...; in : τn]]]T = λ M : Model
• {t : {i, ..., in} →W | t i ∈ [[τ]]TM ∧ ... ∧ t in ∈ [[τn]]TM • t}

The semantic value of the schema type [i : τ; ...; in : τn], given a model M, is the set of bindings, represented
by sets of pairs of names and values, for which the names are those of the schema type and the associated values
are the semantic values of the corresponding types in M.

78 c©ISO/IEC 2002—All rights reserved

A Mark-ups ISO/IEC 13568:2002(E)

Annex A
(normative)

Mark-ups

A.1 Introduction

Not all systems support ISO/IEC 10646 [5][6] (UCS), the definitive representation of Z characters (clause 6).
Other representations are known as mark-ups. For each mark-up, there shall be a functional mapping from it
to the UCS representation. The UCS representation may be used directly: the identity function is a conformant
mapping. This annex defines two mark-ups based on 7-bit ASCII [4] and their mappings:

• a LATEX [10] mark-up, suitable for processing by that tool to render Z characters in their mathematical form;

• an e-mail, or lightweight ASCII, mark-up, suitable for rendering Z characters on a low resolution device, such
as an ASCII-character-based terminal, or in e-mail correspondence.

The mark-up mappings described in this annex show how to partition ASCII mark-up into ‘mark-up tokens’,
and how to convert each mark-up token to a corresponding sequence of Z characters. Mark-up tokens that are
individual ASCII characters (such as digits) are converted by default directly to the corresponding Z character,
i.e. from ASCII-xy to 0000 00xy in UCS. Use of different sequences of mark-up characters that correspond to the
same Z characters is permitted by this International Standard, as the same lexical tokens will result. However,
tools may require lexical tokens to be marked-up consistently.

Some mark-ups, such as the LATEX mark-up, have a rendering separate from their conversion. A mark-up may
specify rendering information, such as bold or italic, that is irrelevant to its conversion. A mark-up’s conversion
and rendering shall be consistent with each other, i.e. someone reading the rendering should perceive the same
sequence of lexical tokens as is specified by this International Standard from the conversion.

The semantics of a specification are specified by the normative clauses of this International Standard on the
assumption that its sections are in a definition before use order. This restriction need not be imposed on the
order in which sections are presented to a human reader or to a tool. A mark-up shall be such that section headers
can be recognised without recognising anything else, so that sections marked-up out-of-order can be permuted
first.

NOTE 1 Specifications with cycles in the parents relation are erroneous, so there is no need to permute their sections.

NOTE 2 The syntax of a mark-up is separate from the syntax of the lexis (clause 7). It would be a mistake to
assume that a mark-up should follow the syntax of the lexis.

EXAMPLE The LATEX mark-up \begin{schema}{S} becomes the Z characters SCHCHAR S for recognition by
the lexis, the braces not appearing in the Z characters, though they have to be there in the LATEX mark-up.

A.2 LATEX mark-up

NOTE Some guidance on implementing the specification contained in this clause is given in [17].

A.2.1 Rendering mode

The rendering of mark-up by LATEX depends on the mode in which it is interpreted. The mark-up of formal Z
text shall be interpreted and rendered in LATEX’s math mode.

Other aspects of the rendering shall be defined to be consistent with the conversion defined below.

A.2.2 White space and comments

Within LATEX’s math mode, white space separates tokens of the mark-up, but only sometimes is rendered as
space.

c©ISO/IEC 2002—All rights reserved 79

ISO/IEC 13568:2002(E) A Mark-ups

The ASCII white space characters space, tab and newline are ‘soft’: they render as nothing, and they shall be
converted to no Z characters.

The ‘hard’ space mark-ups render as specific quantities of space and shall be converted to Z characters as listed
below. The LATEX commands for hard space shall be in scope throughout a specification.

NOTE 1 Early ones in the table are existing LATEX commands; later ones (the tab stops onwards) are additional
commands that have traditionally been used in mark-up of Z.

LATEX command Rendering Z character

~ interword space SPACE
\, thin space SPACE
\: medium space SPACE
\; thick space SPACE
\(space) interword space SPACE
\\ newline NLCHAR
\t1 tab stop 1 SPACE
\t2 tab stop 2 SPACE
\t3 tab stop 3 SPACE
\t4 tab stop 4 SPACE
\t5 tab stop 5 SPACE
\t6 tab stop 6 SPACE
\t7 tab stop 7 SPACE
\t8 tab stop 8 SPACE
\t9 tab stop 9 SPACE
\also small vertical space NLCHAR
\znewpage new page NLCHAR

NOTE 2 It is the generated SPACE characters that go on to separate the tokens of the Z lexis.

All LATEX comments, except directives (see A.2.3), shall be ignored.

NOTE 3 A LATEX comment starts with a % character and extends to the end of that line, over the newline character
itself, and ends with any spaces and tabs at the start of the next line.

All { and } characters that are not prefixed with \ can affect the conversion of neighbouring mark-up, but shall
themselves convert to no Z characters.

A.2.3 Mark-up directives

A.2.3.1 Introduction

LATEX mark-up is based on commands whose definitions determine their rendering. The conversion of the same
commands to corresponding sequences of Z characters shall be specified by mark-up directives (except the com-
mands for hard-space defined in A.2.2 above).

Rendering definitions are in terms of either a specific character or a sequence of other existing mark-up. Mark-up
directives shall analogously be in terms of either a specific character or a sequence of other existing mark-up.

NOTE Rendering definitions are typically formulated in terms of \DeclareMathSymbol and \newcommand commands.

Commands that are used as operator words have space rendered between them and their operands. Mark-up
directives shall specify the conversion of corresponding space. Whereas the quantity of space rendered depends
on whether the operator is a function or a relation, a single SPACE character in the conversion suffices to ensure
consistency between rendering and conversion.

Just as it is an error for a command to be used without a rendering definition, it shall be an error for a command
to be used without a mark-up directive.

In general, a directive begins with %% at the start of a line (no leading space), and ends at the end of that line.

80 c©ISO/IEC 2002—All rights reserved

A Mark-ups ISO/IEC 13568:2002(E)

The usual LATEX rule concerning soft space following a LATEX command being ignored is disabled in the case of
a newline character at the end of a directive.

A.2.3.2 Mark-up directives for single characters

The %%Zchar mark-up directive specifies the conversion of a LATEX command to a Z character. It takes one of
the following forms,

%%Zchar \LaTeXcommand U+nnnn
%%Zchar \LaTeXcommand U-nnnnnnnn

where nnnn is four hexadecimal digits identifying the code position of a character in the Basic Multilingual
Plane of UCS (0000 nnnn), and nnnnnnnn is eight hexadecimal digits identifying the code position of a character
anywhere in UCS (nnnn nnnn). A use of this \LaTeXcommand shall be converted to the corresponding character.

EXAMPLE 1
%%Zchar \Delta U+0394

%%Zchar \arithmos U-0001D538

The LATEX mark-up ‘\Delta’ converts to the Z character ‘∆’ and renders as ‘∆’.
The LATEX mark-up ‘\arithmos’ converts to the Z character ‘A’ and renders as ‘A’.

If a \LaTeXcommand for a character is used as an operator word, then the conversion of SPACE characters before
and/or after it shall be specified using the appropriate %%Zprechar, %%Zpostchar or %%Zinchar mark-up directive.
Any following subscript or superscript shall precede any following SPACE. These SPACE characters shall be omitted
if the \LaTeXcommand is enclosed in braces.

EXAMPLE 2
%%Zinchar \sqsubseteq U+2291

%%Zprechar \finset U-0001D53D

The LATEX mark-up ‘\sqsubseteq’ converts to the Z character sequence ‘ v ’ and renders as ‘ v ’.
The LATEX mark-up ‘\sqsubseteq_1’ converts to the Z character sequence ‘ v↘1↖ ’ and renders as ‘ v1 ’.
The LATEX mark-up ‘\sqsubseteq~_1’ converts to the Z character sequence ‘ v ↘1↖’ and renders as ‘ v 1’.
The LATEX mark-up ‘\finset’ converts to the Z character sequence ‘F ’ and renders as ‘F ’.
The LATEX mark-up ‘{\finset}’ converts to the Z character sequence ‘F’ and renders as ‘F’.

NOTE The braced form is necessary when the character is used within a larger word.

A.2.3.3 Mark-up directives for words

The %%Zword mark-up directive specifies the conversion of a LATEX command to a sequence of Z characters. It
takes the following form,

%%Zword \LaTeXcommand Zstring

where Zstring is LATEX mark-up for a sequence of Z characters. The Zstring shall exclude any leading soft
spaces and end at the end of the line. A use of this \LaTeXcommand shall be converted to the conversion of
Zstring.

EXAMPLE 1
%%Zword \phiS \phi S

The LATEX mark-up ‘\phiS’ converts to the Z character sequence ‘φS’ and renders as ‘φS ’.

If a \LaTeXcommand for a word is used as an operator word, then the conversion of SPACE characters before and/or
after it shall be specified using the appropriate %%Zpreword, %%Zpostword or %%Zinword mark-up directive. Any

c©ISO/IEC 2002—All rights reserved 81

ISO/IEC 13568:2002(E) A Mark-ups

following subscript or superscript shall precede any following SPACE. These SPACE characters shall be omitted if
the \LaTeXcommand is enclosed in braces.

EXAMPLE 2
%%Zinword \dcat {\cat}/

The LATEX mark-up ‘\dcat’ converts to the Z character sequence ‘ a/ ’ and renders as ‘a/ ’.

The LATEX mark-up ‘\dcat_1’ converts to the Z character sequence ‘ a/↘1↖ ’ and renders as ‘a/1 ’.

The LATEX mark-up ‘\dcat~_1’ converts to the Z character sequence ‘ a/ ↘1↖’ and renders as ‘a/ 1’.

The LATEX mark-up ‘{\dcat}’ converts to the Z character sequence ‘a/’and renders as ‘a/’.

NOTE The braced form is necessary when the character sequence is used within a larger word.

A.2.3.4 Scope of a mark-up directive

The scope of a mark-up directive is the entire section in which it appears and any sections of which it is an
ancestor, excluding the headers of those sections, and excepting earlier such directives. There can be no more
than one directive for a particular \LaTeXcommand in the same scope. These %% directives may appear within as
well as between formal paragraphs, merely having to be on lines by themselves.

In converting the Zstring of the mark-up directive for a word, the mark-up rules defined for the Z core language,
and the mark-up rules established by earlier mark-up directives, shall be applied.

EXAMPLE
%%Zword \foo x \bar y

%%Zword \bar +

The order in which these two directives are written matters: in this order, either \bar is erroneously used before it is
defined, or \bar is erroneously defined more than once.

A.2.4 Core characters and words

The following mark-up shall be provided for the characters and words of the Z core language. Each LATEX
command and its conversion is specified in the form of a directive that shall appear in the mark-up of the prelude
section.

A.2.4.1 Greek alphabet characters

Only the minimal subset of Greek alphabet defined in 6.2 needs to be supported by an implementation. The
mark-ups of any other Greek characters shall be as if specified by %%Zchar directives.

Z character LATEX mark-up

∆ %%Zchar \Delta U+0394
Ξ %%Zchar \Xi U+039E
θ %%Zprechar \theta U+03B8
λ %%Zprechar \lambda U+03BB
µ %%Zprechar \mu U+03BC

EXAMPLE
The LATEX mark-up ‘\Delta S’ converts to the Z character sequence ‘∆S’ and renders as ‘∆S ’.
The LATEX mark-up ‘\Delta~S’ converts to the Z character sequence ‘∆ S’ and renders as ‘∆ S ’.
The LATEX mark-up ‘\lambda x’ converts to the Z character sequence ‘λ x’ and renders as ‘λ x ’.
The LATEX mark-up ‘{\lambda}x’ converts to the Z character sequence ‘λx’ and renders as ‘λx ’.

NOTE 1 Exceptions are made for θ, λ and µ to ease the mark-up of binding construction, function construction
and definite description expressions.

82 c©ISO/IEC 2002—All rights reserved

A Mark-ups ISO/IEC 13568:2002(E)

NOTE 2 LATEX does not provide separate mark-up for upper case Greek letters that render like Roman counterparts.

A.2.4.2 Other letter characters

Z character LATEX mark-up

A %%Zchar \arithmos U-0001D538
N %%Zchar \nat U+2115
P %%Zprechar \power U+2119

EXAMPLE
The LATEX mark-up ‘\power S’ converts to the Z character sequence ‘P S’ and renders as ‘PS ’.
The LATEX mark-up ‘{\power}S’ converts to the Z character sequence ‘PS’ and renders as ‘PS ’.

A.2.4.3 Special characters

Z character LATEX mark-up

%%Zchar _ U+005F
{ %%Zchar \{ U+007B
} %%Zchar \} U+007D
〈〈 %%Zchar \ldata U+300A
〉〉 %%Zchar \rdata U+300B
〈| %%Zchar \lblot U+2989
|〉 %%Zchar \rblot U+298A

NOTE No SPACE characters need be converted around SPECIAL characters; space may be rendered if desired.

The mark-up _ needs to be in scope in section headers, so is not introduced in the prelude. It is in scope
throughout a specification.

The LATEX mark-up for subscripts and superscripts shall be converted as follows.

LATEX mark-up Z characters

^ 〈single LATEX token〉 ↗ 〈Z character sequence〉 ↙
^{ 〈LATEX tokens〉 } ↗ 〈Z character sequence〉 ↙
_ 〈single LATEX token〉 ↘ 〈Z character sequence〉 ↖
_{ 〈LATEX tokens〉 } ↘ 〈Z character sequence〉 ↖

EXAMPLE
LATEX mark-up x^1 converts to Z character sequence ‘x↗1↙’, and renders as ‘x1’
LATEX mark-up x^{1} converts to Z character sequence ‘x↗1↙’, and renders as ‘x1’
LATEX mark-up x^\Delta converts to Z character sequence ‘x↗∆↙’, and renders as ‘x∆’
LATEX mark-up x^{\Delta S} converts to Z character sequence ‘x↗∆S↙’, and renders as ‘x∆S ’
LATEX mark-up \exists_1 converts to Z character sequence ‘∃↘1↖’, and renders as ‘∃1’
LATEX mark-up \exists_{1} converts to Z character sequence ‘∃↘1↖’, and renders as ‘∃1’
LATEX mark-up \exists_\Delta converts to Z character sequence ‘∃↘∆↖’, and renders as ‘∃∆’
LATEX mark-up \exists_{\Delta S} converts to Z character sequence ‘∃↘∆S↖’, and renders as ‘∃∆S ’
LATEX mark-up x_a^b converts to Z character sequence ‘x↘a↖↗b↙’, and renders as ‘xa

b ’
LATEX mark-up x_{a^b} converts to Z character sequence ‘x↘a↗b↙↖’, and renders as ‘xab ’
LATEX mark-up x_a{}_b converts to Z character sequence ‘x↘a↖↘b↖’, and renders as ‘xa b ’

Box characters arise from the conversion of paragraph mark-up, as described in A.2.7. Mark-ups for NLCHAR and
SPACE are given in A.2.2.

c©ISO/IEC 2002—All rights reserved 83

ISO/IEC 13568:2002(E) A Mark-ups

A.2.4.4 Symbol characters (except mathematical toolkit characters)

The LATEX mark-up of the Z character • is the ASCII character @ (see below for its spacing behaviour.) Its
mark-up is in scope throughout a specification.

Z character LATEX mark-up

` %%Zchar \vdash U+22A2
∧ %%Zinchar \land U+2227
∨ %%Zinchar \lor U+2228
⇒ %%Zinchar \implies U+21D2
⇔ %%Zinchar \iff U+21D4
¬ %%Zprechar \lnot U+00AC
∀ %%Zprechar \forall U+2200
∃ %%Zprechar \exists U+2203
× %%Zinchar \cross U+00D7
∈ %%Zinchar \in U+2208
\ %%Zinchar \hide U+29F9
� %%Zinchar \project U+2A21
o
9 %%Zinchar \semi U+2A1F
>> %%Zinchar \pipe U+2A20

Some of the ASCII symbol characters have an associated spacing class in LATEX’s math mode, which causes space
to be rendered around them in certain contexts.

The characters * + - @ and | are classed as LATEX math functions. SPACE characters shall usually be added
around their individual occurrences. Any following subscript or superscript shall precede the following SPACE.
The cases where the surrounding SPACEs are omitted are when the character is enclosed in braces and when the
character is itself used as a subscript or superscript (follows _ or ^).

EXAMPLE 1
The LATEX mark-up ‘x+y’ converts to the Z character sequence ‘x + y’ and renders as ‘x + y ’.
The LATEX mark-up ‘x{+}y’ converts to the Z character sequence ‘x+y’ and renders as ‘x+y ’.
The LATEX mark-up ‘x +_1 y’ converts to the Z character sequence ‘x +↘1↖ y’ and renders as ‘x +1 y ’.
The LATEX mark-up ‘x^+’ converts to the Z character sequence ‘x↗+↙’ and renders as ‘x+’.

The characters ; and , are classed as LATEX math punctuations. They are converted like the LATEX math functions
above, except that no SPACE is added before their occurrences.

The characters : < = and > are classed as LATEX math relations. SPACE characters shall usually be added around
sequences of their occurrences. Any following subscript or superscript shall precede the following SPACE. The
cases where the surrounding SPACEs are omitted are when the sequence of characters is enclosed in braces and
when the sequence of characters is itself used as a subscript or superscript (follows _ or ^).

EXAMPLE 2
The LATEX mark-up ‘x=y’ converts to the Z character sequence ‘x = y’ and renders as ‘x = y ’.
The LATEX mark-up ‘x==y’ converts to the Z character sequence ‘x == y’ and renders as ‘x == y ’.
The LATEX mark-up ‘x::=y’ converts to the Z character sequence ‘x ::= y’ and renders as ‘x ::= y ’.
The LATEX mark-up ‘x{=}y’ converts to the Z character sequence ‘x=y’ and renders as ‘x=y ’.
The LATEX mark-up ‘x =_1 y’ converts to the Z character sequence ‘x =↘1↖ y’ and renders as ‘x =1 y ’.
The LATEX mark-up ‘x^=’ converts to the Z character sequence ‘x↗=↙’ and renders as ‘x=’.
The LATEX mark-up ‘x= =y’ converts to the Z character sequence ‘x == y’ and renders as ‘x == y ’.

84 c©ISO/IEC 2002—All rights reserved

A Mark-ups ISO/IEC 13568:2002(E)

A.2.4.5 Core words

Z characters LATEX mark-up

if %%Zpreword \IF if
then %%Zinword \THEN then
else %%Zinword \ELSE else
let %%Zpreword \LET let
pre %%Zpreword \pre pre
function %%Zpreword \function function
generic %%Zpreword \generic generic
relation %%Zpreword \relation relation
leftassoc %%Zinword \leftassoc leftassoc
rightassoc %%Zinword \leftassoc leftassoc

EXAMPLE LATEX mark-up: \IF \disjoint a \THEN x = y \mod z \ELSE x = y \div z

Example rendering: if disjoint a then x = y mod z else x = y div z
Z characters: if disjoint a then x = y mod z else x = y div z

NOTE 1 Some command names are capitalised to avoid clashes with existing command names.

NOTE 2 Mark-up directives for the section and parents keywords do not appear in the prelude section, as they
would not be in scope in section headers where those LATEX commands are used (see A.2.6).

A LATEX command shall be provided for the core keyword , , to ease the avoidance of converted SPACE between
the commas (see A.2.4.4). A LATEX command shall be provided for the core keyword to ease the conversion of
SPACEs around it.

Z characters LATEX mark-up

, , %%Zinword \listarg {,}{,}
%%Zinword \varg _

A.2.5 Mathematical toolkit characters and words

The following mark-up shall be provided for the names defined in the mathematical toolkit. Each LATEX command
and its conversion is specified in the form of a directive that shall appear in the mark-up of the relevant section.

c©ISO/IEC 2002—All rights reserved 85

ISO/IEC 13568:2002(E) A Mark-ups

A.2.5.1 Section set toolkit

Z character LATEX mark-up

↔ %%Zinchar \rel U+2194
→ %%Zinchar \fun U+2192
6= %%Zinchar \neq U+2260
6∈ %%Zinchar \notin U+2209
∅ %%Zchar \emptyset U+2205
⊆ %%Zinchar \subseteq U+2286
⊂ %%Zinchar \subset U+2282
∪ %%Zinchar \cup U+222A
∩ %%Zinchar \cap U+2229
\ %%Zinchar \setminus U+005C
	 %%Zinchar \symdiff U+2296⋃

%%Zprechar \bigcup U+22C3⋂
%%Zprechar \bigcap U+22C2

F %%Zprechar \finset U-0001D53D

A.2.5.2 Section relation toolkit

Z characters LATEX mark-up

7→ %%Zinchar \mapsto U+21A6
dom %%Zpreword \dom dom
ran %%Zpreword \ran ran
id %%Zpreword \id id
o
9 %%Zinchar \comp U+2A3E
◦ %%Zinchar \circ U+2218
C %%Zinchar \dres U+25C1
B %%Zinchar \rres U+25B7
−C %%Zinchar \ndres U+2A64
−B %%Zinchar \nrres U+2A65
∼ %%Zpostchar \inv U+223C
(| %%Zinchar \limg U+2987
|) %%Zpostchar \rimg U+2988
⊕ %%Zinchar \oplus U+2295
↗+↙ %%Zpostword \plus ^+
↗∗↙ %%Zpostword \star ^*

86 c©ISO/IEC 2002—All rights reserved

A Mark-ups ISO/IEC 13568:2002(E)

A.2.5.3 Section function toolkit

Z characters LATEX mark-up

7→ %%Zinchar \pfun U+21F8
7� %%Zinchar \pinj U+2914
� %%Zinchar \inj U+21A3
7→→ %%Zinchar \psurj U+2900
→→ %%Zinchar \surj U+21A0
�→ %%Zinchar \bij U+2916
7 7→ %%Zinchar \ffun U+21FB
7 7� %%Zinchar \finj U+2915

disjoint %%Zpreword \disjoint disjoint
partition %%Zinword \partition partition

A.2.5.4 Section number toolkit

Z characters LATEX mark-up

Z %%Zchar \num U+2124
- %%Zprechar \negate U+002D
≤ %%Zinchar \leq U+2264
≥ %%Zinchar \geq U+2265
div %%Zinword \div div
mod %%Zinword \mod mod

The mark-up character ‘-’, having had SPACEs put around it because it is a LATEX math function character (see
A.2.4.4), shall be converted to the subtraction operator’s Z character ‘U+2212’, while the Z character ‘-’ shall be
the name of the negation operator.

A.2.5.5 Section sequence toolkit

Z characters LATEX mark-up

. . %%Zinword \upto ..
%%Zprechar \# U+0023
seq %%Zpreword \seq seq
iseq %%Zpreword \iseq iseq
〈 %%Zprechar \langle U+3008
〉 %%Zpostchar \rangle U+3009
a %%Zinchar \cat U+2040
� %%Zinchar \extract U+21BF
� %%Zinchar \filter U+21BE
prefix %%Zinword \prefix prefix
suffix %%Zinword \suffix suffix
infix %%Zinword \infix infix
a/ %%Zinword \dcat {\cat}/

The superscripted form of relational iteration shall be marked-up using ^{ and }, with hard space where necessary
to prevent these being mistaken for parts of a larger word.

c©ISO/IEC 2002—All rights reserved 87

ISO/IEC 13568:2002(E) A Mark-ups

A.2.6 Section header mark-up

Section headers shall be enclosed in a LATEX zsection environment. The \begin{zsection} is converted to
ZEDCHAR. The \end{zsection} is converted to ENDCHAR.

\begin{zsection}
\SECTION NAME \parents ...
\end{zsection}

Within a section header, the only LATEX commands that are converted are \SECTION, \parents, _ and the hard
space commands of A.2.2. These mark-ups for the section and parents keywords shall be as if specified by the
following mark-up directives, and shall be in scope throughout a specification.

Z characters LATEX mark-up

section %%Zpreword \SECTION section
parents %%Zinword \parents parents

A.2.7 Paragraph mark-up

A.2.7.1 Introduction

Each formal Z paragraph appears between a pair of \begin{xxx} and \end{xxx} LATEX commands. Text not
appearing between such commands is informal accompanying text.

The \begin{xxx} command is converted to a box character, the ZEDCHAR character serving for those paragraphs
that are rendered without a box. Any middle line in a boxed paragraph is marked-up using the \where LATEX
command, which is converted to the Z | character with SPACEs around it. The \end{xxx} command is converted
to the Z ENDCHAR character.

A.2.7.2 Axiomatic description paragraph mark-up

\begin{axdef}
DeclPart
\where
Predicate
\end{axdef}

The mark-up \begin{axdef} is converted to an AXCHAR character. The mark-up \where is converted to a |
character with SPACEs around it. The mark-up \end{axdef} is converted to an ENDCHAR character.

A.2.7.3 Schema definition paragraph mark-up

\begin{schema}{NAME}
DeclPart
\where
Predicate
\end{schema}

The mark-up \begin{schema}{ } is converted to a SCHCHAR character. The mark-up \where is converted to
a | character with SPACEs around it. The mark-up \end{schema} is converted to an ENDCHAR character.

A.2.7.4 Generic axiomatic description paragraph mark-up

\begin{gendef}[Formals]
DeclPart
\where
Predicate
\end{gendef}

88 c©ISO/IEC 2002—All rights reserved

A Mark-ups ISO/IEC 13568:2002(E)

The mark-up \begin{gendef} is converted to an AXCHAR and a GENCHAR character. The mark-up \where is
converted to a | character with SPACEs around it. The mark-up \end{gendef} is converted to an ENDCHAR
character.

A.2.7.5 Generic schema definition paragraph mark-up

\begin{schema}{NAME}[Formals]
DeclPart
\where
Predicate
\end{schema}

The mark-up \begin{schema}{ } is converted to a SCHCHAR and a GENCHAR character. The mark-up \where
is converted to a | character with SPACEs around it. The mark-up \end{schema} is converted to an ENDCHAR
character.

A.3 E-mail mark-up

This e-mail mark-up is designed primarily as a human-readable lightweight mark-up, but may also be processed
by tools. The character ‘%’ delimits an ASCII string used to represent a sequence of Z characters, for example
‘×’ as ‘%x%’. This disambiguates it from, for example, the name ‘x’.

Where there is no danger of ambiguity (for the human reader) the trailing ‘%’ character, or both ‘%’ characters,
may be omitted to reduce clutter.

A literal ‘%’ character may be introduced into the text as ‘%%’.

A.3.1 Letter characters

In the following, the e-mail string is to be used surrounded by a leading and trailing ‘%’ character.

Names that use only ASCII characters, or that are composed out of previously defined Z characters, are not listed
here.

A.3.1.1 Greek alphabet characters

Only the minimal subset of Greek alphabet defined in 6.2 need be supported by an implementation. Those Greek
characters that are supported shall use the mark-up given here.

E-mail string Z character

Delta ∆
Xi Ξ
theta θ
lambda λ
mu µ

A.3.1.2 Other Z core language letter characters

E-mail string Z character

arithmos A

N N

P P

c©ISO/IEC 2002—All rights reserved 89

ISO/IEC 13568:2002(E) A Mark-ups

A.3.2 Special characters

E-mail string Z character

/^ ↗
v/ ↙
\v ↘
^\ ↖
<< 〈〈
>> 〉〉
<| 〈|
|> |〉

Box characters arise from the conversion of paragraph mark-up, as described in A.3.5.

A.3.3 Symbol characters (except mathematical toolkit characters)

E-mail string Z character

| |
|- `
/\ ∧
\/ ∨
==> ⇒
<=> ⇔
not ¬
A ∀
E ∃
x ×
e ∈
@ •
S\ \
S|\ �
S; o

9

S>> >>

A.3.4 Mathematical toolkit characters and words

The following mark-up is provided for the tokens in the mathematical toolkit.

90 c©ISO/IEC 2002—All rights reserved

A Mark-ups ISO/IEC 13568:2002(E)

A.3.4.1 Section set toolkit

E-mail string Z character

<--> ↔
--> →
/= 6=
/e 6∈
(/) ∅

c_ ⊆
c ⊂
u ∪
n ∩
(-) 	
uu

⋃
nn

⋂
F F

A.3.4.2 Section relation toolkit

E-mail string Z character

|--> 7→
; o

9

o ◦
<: C
:> B
<-: −C
:-> −B
~ ∼

(| (|
|) |)
(+) ⊕
+ +

* ∗

A.3.4.3 Section function toolkit

E-mail string Z character

-|-> 7→
>-|-> 7�
>--> �
-|->> 7→→
-->> →→
>-->> �→
-||-> 7 7→
>-||-> 7 7�

c©ISO/IEC 2002—All rights reserved 91

ISO/IEC 13568:2002(E) A Mark-ups

A.3.4.4 Section number toolkit

E-mail string Z character

Z Z

- - (unary negation)
<= ≤
>= ≥

A.3.4.5 Section sequence toolkit

E-mail string Z character

< 〈
> 〉
^ a

/| �
|\ �

A.3.5 Paragraph mark-up

A.3.5.1 Axiomatic description paragraph mark-up

+..
DeclPart
|--
Predicate
-..

The mark-up +.. is converted to an AXCHAR character. The mark-up |-- is converted to a | character. The
mark-up -.. is converted to an ENDCHAR character.

A.3.5.2 Schema definition paragraph mark-up

+-- NAME ---
DeclPart
|--
Predicate

The mark-up +-- --- is converted to a SCHCHAR character. The mark-up |-- is converted to a | character.
The mark-up --- is converted to an ENDCHAR character.

A.3.5.3 Generic axiomatic description paragraph mark-up

+== [Formals] ===
DeclPart
|--
Predicate
-==

The mark-up +== === is converted to an AXCHAR and a GENCHAR character. The mark-up |-- is converted to
a | character. The mark-up -== is converted to an ENDCHAR character.

92 c©ISO/IEC 2002—All rights reserved

A Mark-ups ISO/IEC 13568:2002(E)

A.3.5.4 Generic schema definition paragraph mark-up

+-- NAME[Formals] ---
DeclPart
|--
Predicate

The mark-up +-- --- is converted to a SCHCHAR and a GENCHAR character. The mark-up |-- is converted to
a | character. The mark-up --- is converted to an ENDCHAR character.

A.3.5.5 Other paragraph mark-up

Unboxed formal paragraphs start with ‘%%Z’ on a line by itself, which converts to a ZEDCHAR character, and end
with a ‘%%’ on a line by itself, which converts to an ENDCHAR character.

c©ISO/IEC 2002—All rights reserved 93

ISO/IEC 13568:2002(E) B Mathematical toolkit

Annex B
(normative)

Mathematical toolkit

Copyright notice
The reproduction of this annex is permitted on the understanding that this material is public

domain, and on the condition that this International Standard is referenced as the source document.
With the exception of clauses 6.2, 7.2, 8.2, 11 and annex B, all other parts of the text are subject to
the usual copyright rules stated on page ii of this International Standard.

B.1 Introduction

The mathematical toolkit is an optional extension to the compulsory Z core language. It comprises a hierarchy
of related sections, each defining operators that are widely used in common application domains.

set toolkit

6

relation toolkit

6

function toolkit number toolkit

@
@I

�
��

sequence toolkit

6

standard toolkit

Figure B.1 — Parent relation between sections of the mathematical toolkit

The division of the mathematical toolkit into separate sections allows use of certain subsets of the toolkit rather
than its entirety. For example, if sequences are not used in a particular specification, then using function toolkit
and number toolkit as parents avoids bringing the notation of sequence toolkit into scope. Notations that are not
reused can be given different definitions.

Section standard toolkit is an implicit parent of an anonymous specification.

B.2 Preliminary definitions

section set toolkit

B.2.1 Relations

generic 5 rightassoc (↔)

X ↔ Y == P(X ×Y)

X ↔ Y is the set of relations between X and Y , that is, the set of all sets of ordered pairs whose first members
are members of X and whose second members are members of Y .

94 c©ISO/IEC 2002—All rights reserved

B Mathematical toolkit ISO/IEC 13568:2002(E)

B.2.2 Total functions

generic 5 rightassoc (→)

X → Y == { f : X ↔ Y | ∀ x : X • ∃1 y : Y • (x , y) ∈ f }

X → Y is the set of all total functions from X to Y , that is, the set of all relations between X and Y such that
each x in X is related to exactly one y in Y .

B.3 Sets

B.3.1 Inequality relation

relation (6=)

[X]
6= : X ↔ X

∀ x , y : X • x 6= y ⇔ ¬ x = y

Inequality is the relation between those values of the same type that are not equal to each other.

B.3.2 Non-membership

relation (6∈)

[X]
6∈ : X ↔ PX

∀ x : X ; a : PX • x 6∈ a ⇔ ¬ x ∈ a

Non-membership is the relation between those values of a type, x , and sets of values of that type, a, for which x
is not a member of a.

B.3.3 Empty set

∅[X] == { x : X | false }

The empty set of any type is the set of that type that has no members.

B.3.4 Subset relation

relation (⊆)

[X]
⊆ : PX ↔ PX

∀ a, b : PX • a ⊆ b ⇔ (∀ x : a • x ∈ b)

Subset is the relation between two sets of the same type, a and b, such that every member of a is a member of b.

c©ISO/IEC 2002—All rights reserved 95

ISO/IEC 13568:2002(E) B Mathematical toolkit

B.3.5 Proper subset relation

relation (⊂)

[X]
⊂ : PX ↔ PX

∀ a, b : PX • a ⊂ b ⇔ a ⊆ b ∧ a 6= b

Proper subset is the relation between two sets of the same type, a and b, such that a is a subset of b, and a and
b are not equal.

B.3.6 Non-empty subsets

P1 X == { a : PX | a 6= ∅ }

If X is a set, then P1 X is the set of all non-empty subsets of X .

B.3.7 Set union

function 30 leftassoc (∪)

[X]
∪ : PX × PX → PX

∀ a, b : PX • a ∪ b = { x : X | x ∈ a ∨ x ∈ b }

The union of two sets of the same type is the set of values that are members of either set.

B.3.8 Set intersection

function 40 leftassoc (∩)

[X]
∩ : PX × PX → PX

∀ a, b : PX • a ∩ b = { x : X | x ∈ a ∧ x ∈ b }

The intersection of two sets of the same type is the set of values that are members of both sets.

B.3.9 Set difference

function 30 leftassoc (\)

[X]
\ : PX × PX → PX

∀ a, b : PX • a \ b = { x : X | x ∈ a ∧ x 6∈ b }

The difference of two sets of the same type is the set of values that are members of the first set but not members
of the second set.

96 c©ISO/IEC 2002—All rights reserved

B Mathematical toolkit ISO/IEC 13568:2002(E)

B.3.10 Set symmetric difference

function 25 leftassoc ()

[X]
	 : PX × PX → PX

∀ a, b : PX • a 	 b = { x : X | ¬ (x ∈ a ⇔ x ∈ b) }

The symmetric set difference of two sets of the same type is the set of values that are members of one set, or the
other, but not members of both.

B.3.11 Generalized union

[X]⋃
: PPX → PX

∀A : PPX •
⋃

A = { x : X | ∃ a : A • x ∈ a }

The generalized union of a set of sets of the same type is the set of values of that type that are members of at
least one of the sets.

B.3.12 Generalized intersection

[X]⋂
: PPX → PX

∀A : PPX •
⋂

A = { x : X | ∀ a : A • x ∈ a }

The generalized intersection of a set of sets of values of the same type is the set of values of that type that are
members of every one of the sets.

B.4 Finite sets

B.4.1 Finite subsets

generic (F)

FX ==
⋂
{ A : PPX | ∅ ∈ A ∧ (∀ a : A; x : X • a ∪ {x} ∈ A) }

If X is a set, then FX is the set of all finite subsets of X . The set of finite subsets of X is the smallest set that
contains the empty set and is closed under the action of adding single elements of X .

B.4.2 Non-empty finite subsets

F1 X == FX \ {∅}

If X is a set, then F1 X is the set of all non-empty finite subsets of X . The set of non-empty finite subsets of X
is the smallest set that contains the singleton sets of X and is closed under the action of adding single elements
of X .

B.5 More notations for relations

section relation toolkit parents set toolkit

c©ISO/IEC 2002—All rights reserved 97

ISO/IEC 13568:2002(E) B Mathematical toolkit

B.5.1 First component projection

[X ,Y]
first : X ×Y → X

∀ p : X ×Y • first p = p.1

For any ordered pair p, first p is the first component of the pair.

B.5.2 Second component projection

[X ,Y]
second : X ×Y → Y

∀ p : X ×Y • second p = p.2

For any ordered pair p, second p is the second component of the pair.

B.5.3 Maplet

function 10 leftassoc (7→)

[X ,Y]
7→ : X ×Y → X ×Y

∀ x : X ; y : Y • x 7→ y = (x , y)

The maplet forms an ordered pair from two values; x 7→ y is just another notation for (x , y).

B.5.4 Domain

[X ,Y]
dom : (X ↔ Y)→ PX

∀ r : X ↔ Y • dom r = { p : r • p.1 }

The domain of a relation r is the set of first components of the ordered pairs in r .

B.5.5 Range

[X ,Y]
ran : (X ↔ Y)→ PY

∀ r : X ↔ Y • ran r = { p : r • p.2 }

The range of a relation r is the set of second components of the ordered pairs in r .

B.5.6 Identity relation

generic (id)

id X == { x : X • x 7→ x }

The identity relation on a set X is the relation that relates every member of X to itself.

98 c©ISO/IEC 2002—All rights reserved

B Mathematical toolkit ISO/IEC 13568:2002(E)

B.5.7 Relational composition

function 40 leftassoc (o
9)

[X ,Y ,Z]
o
9 : (X ↔ Y)× (Y ↔ Z)→ (X ↔ Z)

∀ r : X ↔ Y ; s : Y ↔ Z • r o
9 s = { p : r ; q : s | p.2 = q .1 • p.1 7→ q .2 }

The relational composition of a relation r : X ↔ Y and s : Y ↔ Z is a relation of type X ↔ Z formed by taking
all the pairs p of r and q of s, where the second component of p is equal to the first component of q , and relating
the first component of p with the second component of q .

B.5.8 Functional composition

function 40 leftassoc (◦)

[X ,Y ,Z]
◦ : (Y ↔ Z)× (X ↔ Y)→ (X ↔ Z)

∀ r : X ↔ Y ; s : Y ↔ Z • s ◦ r = r o
9 s

The functional composition of s and r is the same as the relational composition of r and s.

B.5.9 Domain restriction

function 65 rightassoc (C)

[X ,Y]
C : PX × (X ↔ Y)→ (X ↔ Y)

∀ a : PX ; r : X ↔ Y • a C r = { p : r | p.1 ∈ a }

The domain restriction of a relation r : X ↔ Y by a set a : PX is the set of pairs in r whose first components
are in a.

B.5.10 Range restriction

function 60 leftassoc (B)

[X ,Y]
B : (X ↔ Y)× PY → (X ↔ Y)

∀ r : X ↔ Y ; b : PY • r B b = { p : r | p.2 ∈ b }

The range restriction of a relation r : X ↔ Y by a set b : PY is the set of pairs in r whose second components
are in b.

B.5.11 Domain subtraction

function 65 rightassoc (−C)

[X ,Y]
−C : PX × (X ↔ Y)→ (X ↔ Y)

∀ a : PX ; r : X ↔ Y • a −C r = { p : r | p.1 6∈ a }

The domain subtraction of a relation r : X ↔ Y by a set a : PX is the set of pairs in r whose first components
are not in a.

c©ISO/IEC 2002—All rights reserved 99

ISO/IEC 13568:2002(E) B Mathematical toolkit

B.5.12 Range subtraction

function 60 leftassoc (−B)

[X ,Y]
−B : (X ↔ Y)× PY → (X ↔ Y)

∀ r : X ↔ Y ; b : PY • r −B b = { p : r | p.2 6∈ b }

The range subtraction of a relation r : X ↔ Y by a set b : PY is the set of pairs in r whose second components
are not in b.

B.5.13 Relational inversion

function (∼)

[X ,Y]
∼ : (X ↔ Y)→ (Y ↔ X)

∀ r : X ↔ Y • r ∼ = { p : r • p.2 7→ p.1 }

The inverse of a relation is the relation obtained by reversing every ordered pair in the relation.

B.5.14 Relational image

function ((| |))

[X ,Y]
(| |) : (X ↔ Y)× PX → PY

∀ r : X ↔ Y ; a : PX • r(| a |) = { p : r | p.1 ∈ a • p.2 }

The relational image of a set a : PX through a relation r : X ↔ Y is the set of values of type Y that are related
under r to a value in a.

B.5.15 Overriding

function 50 leftassoc (⊕)

[X ,Y]
⊕ : (X ↔ Y)× (X ↔ Y)→ (X ↔ Y)

∀ r , s : X ↔ Y • r ⊕ s = ((dom s)−C r) ∪ s

If r and s are both relations between X and Y , the overriding of r by s is the whole of s together with those
members of r that have no first components that are in the domain of s.

B.5.16 Transitive closure

function (+)

[X]
+ : (X ↔ X)→ (X ↔ X)

∀ r : X ↔ X • r + =
⋂
{ s : X ↔ X | r ⊆ s ∧ r o

9 s ⊆ s }

The transitive closure of a relation r : X ↔ X is the smallest set that contains r and is closed under the action
of composing r with its members.

100 c©ISO/IEC 2002—All rights reserved

B Mathematical toolkit ISO/IEC 13568:2002(E)

B.5.17 Reflexive transitive closure

function (∗)

[X]
∗ : (X ↔ X)→ (X ↔ X)

∀ r : X ↔ X • r ∗ = r + ∪ id X

The reflexive transitive closure of a relation r : X ↔ X is the relation formed by extending the transitive closure
of r by the identity relation on X .

B.6 Functions

section function toolkit parents relation toolkit

B.6.1 Partial functions

generic 5 rightassoc (7→)

X 7→ Y == { f : X ↔ Y | ∀ p, q : f | p.1 = q .1 • p.2 = q .2 }

X 7→ Y is the set of all partial functions from X to Y , that is, the set of all relations between X and Y such
that each x in X is related to at most one y in Y . The terms “function” and “partial function” are synonymous.

B.6.2 Partial injections

generic 5 rightassoc (7�)

X 7� Y == { f : X ↔ Y | ∀ p, q : f • p.1 = q .1⇔ p.2 = q .2 }

X 7� Y is the set of partial injections from X to Y , that is, the set of all relations between X and Y such that
each x in X is related to no more than one y in Y , and each y in Y is related to no more than one x in X . The
terms “injection” and “partial injection” are synonymous.

B.6.3 Total injections

generic 5 rightassoc (�)

X � Y == (X 7� Y) ∩ (X → Y)

X � Y is the set of total injections from X to Y , that is, the set of injections from X to Y that are also total
functions from X to Y .

B.6.4 Partial surjections

generic 5 rightassoc (7→→)

X 7→→ Y == { f : X 7→ Y | ran f = Y }

X 7→→ Y is the set of partial surjections from X to Y , that is, the set of functions from X to Y whose range is
equal to Y . The terms “surjection” and “partial surjection” are synonymous.

c©ISO/IEC 2002—All rights reserved 101

ISO/IEC 13568:2002(E) B Mathematical toolkit

B.6.5 Total surjections

generic 5 rightassoc (→→)

X →→ Y == (X 7→→ Y) ∩ (X → Y)

X →→ Y is the set of total surjections from X to Y , that is, the set of surjections from X to Y that are also total
functions from X to Y .

B.6.6 Bijections

generic 5 rightassoc (�→)

X �→ Y == (X →→ Y) ∩ (X � Y)

X �→ Y is the set of bijections from X to Y , that is, the set of total surjections from X to Y that are also total
injections from X to Y .

B.6.7 Finite functions

generic 5 rightassoc (7 7→)

X 7 7→ Y == (X 7→ Y) ∩ F(X ×Y)

The finite functions from X to Y are the functions from X to Y that are also finite sets.

B.6.8 Finite injections

generic 5 rightassoc (7 7�)

X 7 7� Y == (X 7 7→ Y) ∩ (X 7� Y)

The finite injections from X to Y are the injections from X to Y that are also finite functions from X to Y .

B.6.9 Disjointness

relation (disjoint)

[L,X]
disjoint : P(L↔ PX)

∀ f : L↔ PX • disjoint f ⇔ (∀ p, q : f | p 6= q • p.2 ∩ q .2 = ∅)

A labelled family of sets is disjoint precisely when any distinct pair yields sets with no members in common.

B.6.10 Partitions

relation (partition)

[L,X]
partition : (L↔ PX)↔ PX

∀ f : L↔ PX ; a : PX • f partition a ⇔ disjoint f ∧
⋃

(ran f) = a

A labelled family of sets f partitions a set a precisely when f is disjoint and the union of all the sets in f is a.

102 c©ISO/IEC 2002—All rights reserved

B Mathematical toolkit ISO/IEC 13568:2002(E)

B.7 Numbers

section number toolkit

B.7.1 Successor

function (succ)

succ : P(N× N)

(succ) = λn : N • n + 1

The successor of a natural number n is equal to n + 1.

B.7.2 Integers

Z : PA

Z is the set of integers, that is, positive and negative whole numbers and zero. The set Z is characterised by
axioms for its additive structure given in the prelude (clause 11) together with the next formal paragraph below.

Number systems that extend the integers may be specified as supersets of Z.

B.7.3 Addition of integers, arithmetic negation

function (-)

- : P(A× A)

∀ x , y : Z • ∃1 z : Z • ((x , y), z) ∈ (+)
∀ x : Z • ∃1 y : Z • (x , y) ∈ (-)
∀ i , j , k : Z •

(i + j) + k = i + (j + k)
∧ i + j = j + i
∧ i + - i = 0
∧ i + 0 = i

Z = {z : A | ∃ x : N • z = x ∨ z = - x}

The binary addition operator (+) is defined in the prelude (clause 11). The definition here introduces additional
properties for integers. The addition and negation operations on integers are total functions that take integer
values. The integers form a commutative group under (+) with (-) as the inverse operation and 0 as the
identity element.

NOTE If function toolkit notation were exploited, the negation operator could be defined as follows.

- : A 7→ A

(Z× Z)C (+) ∈ Z× Z→ Z

ZC (-) ∈ Z→ Z

∀ i , j , k : Z •
(i + j) + k = i + (j + k)

∧ i + j = j + i

∧ i + - i = 0

∧ i + 0 = i

∀ h : PZ •
1 ∈ h ∧ (∀ i , j : h • i + j ∈ h ∧ - i ∈ h)

⇒ h = Z

c©ISO/IEC 2002—All rights reserved 103

ISO/IEC 13568:2002(E) B Mathematical toolkit

B.7.4 Subtraction

function 30 leftassoc (−)

− : P((A× A)× A)

∀ x , y : Z • ∃1 z : Z • ((x , y), z) ∈ (−)
∀ i , j : Z • i − j = i + - j

Subtraction is a function whose domain includes all pairs of integers. For all integers i and j , i − j is equal to
i + - j .

NOTE If function toolkit notation were exploited, the subtraction operator could be defined as follows.

− : A× A 7→ A

(Z× Z)C (−) ∈ Z× Z→ Z

∀ i , j : Z • i − j = i + - j

B.7.5 Less-than-or-equal

relation (≤)

≤ : P(A× A)

∀ i , j : Z • i ≤ j ⇔ j − i ∈ N

For all integers i and j , i ≤ j if and only if their difference j − i is a natural number.

B.7.6 Less-than

relation (<)

< : P(A× A)

∀ i , j : Z • i < j ⇔ i + 1 ≤ j

For all integers i and j , i < j if and only if i + 1 ≤ j .

B.7.7 Greater-than-or-equal

relation (≥)

≥ : P(A× A)

∀ i , j : Z • i ≥ j ⇔ j ≤ i

For all integers i and j , i ≥ j if and only if j ≤ i .

B.7.8 Greater-than

relation (>)

> : P(A× A)

∀ i , j : Z • i > j ⇔ j < i

For all integers i and j , i > j if and only if j < i .

104 c©ISO/IEC 2002—All rights reserved

B Mathematical toolkit ISO/IEC 13568:2002(E)

B.7.9 Strictly positive natural numbers

N1 == {x : N | ¬ x = 0}

The strictly positive natural numbers N1 are the natural numbers except zero.

B.7.10 Non-zero integers

Z1 == {x : Z | ¬ x = 0}

The non-zero integers Z1 are the integers except zero.

B.7.11 Multiplication of integers

function 40 leftassoc (∗)

∗ : P((A× A)× A)

∀ x , y : Z • ∃1 z : Z • ((x , y), z) ∈ (∗)
∀ i , j , k : Z •

(i ∗ j) ∗ k = i ∗ (j ∗ k)
∧ i ∗ j = j ∗ i
∧ i ∗ (j + k) = i ∗ j + i ∗ k
∧ 0 ∗ i = 0
∧ 1 ∗ i = i

The binary multiplication operator (∗) is defined for integers. The multiplication operation on integers is a
total function and has integer values. Multiplication on integers is characterised by the unique operation under
which the integers become a commutative ring with identity element 1.

NOTE If function toolkit notation were exploited, the multiplication operator could be defined as follows.

∗ : (A× A) 7→ A

(Z× Z)C (∗) ∈ Z× Z→ Z

∀ i , j , k : Z •
(i ∗ j) ∗ k = i ∗ (j ∗ k)

∧ i ∗ j = j ∗ i

∧ i ∗ (j + k) = i ∗ j + i ∗ k

∧ 0 ∗ i = 0

∧ 1 ∗ i = i

B.7.12 Division, modulus

function 40 leftassoc (div)
function 40 leftassoc (mod)

div , mod : P((A× A)× A)

∀ x : Z; y : Z1 • ∃1 z : Z • ((x , y), z) ∈ (div)
∀ x : Z; y : Z1 • ∃1 z : Z • ((x , y), z) ∈ (mod)
∀ i : Z; j : Z1 •

i = (i div j) ∗ j + i mod j
∧ (0 ≤ i mod j < j ∨ j < i mod j ≤ 0)

c©ISO/IEC 2002—All rights reserved 105

ISO/IEC 13568:2002(E) B Mathematical toolkit

For all integers i and non-zero integers j , the pair (i , j) is in the domain of div and of mod , and i div j and
i mod j have integer values.

When not zero, i mod j has the same sign as j . This means that i div j is the largest integer no greater than the
rational number i/j .

NOTE If function toolkit notation were exploited, the division and modulus operators could be defined as follows.

div , mod : A× A 7→ A

(Z× Z1)C (div) ∈ Z× Z1 → Z

(Z× Z1)C (mod) ∈ Z× Z1 → Z

∀ i : Z; j : Z1 •
i = (i div j) ∗ j + i mod j

∧ (0 ≤ i mod j < j ∨ j < i mod j ≤ 0)

B.8 Sequences

section sequence toolkit parents function toolkit ,number toolkit

B.8.1 Number range

function 20 leftassoc (. .)

. . : A× A 7→ PA

(Z× Z)C (. .) ∈ Z× Z→ PZ

∀ i , j : Z • i . . j = { k : Z | i ≤ k ≤ j }

The number range from i to j is the set of all integers greater than or equal to i , which are also less than or equal
to j .

B.8.2 Iteration

[X]
iter : Z→ (X ↔ X)→ (X ↔ X)

∀ r : X ↔ X • iter 0 r = id X
∀ r : X ↔ X ; n : N • iter (n + 1) r = r o

9 (iter n r)
∀ r : X ↔ X ; n : N • iter (- n) r = iter n (r ∼)

iter is the iteration function for a relation. The iteration of a relation r : X ↔ X for zero times is the identity
relation on X . The iteration of a relation r : X ↔ X for n + 1 times is the composition of the relation with its
iteration n times. The iteration of a relation r : X ↔ X for - n times is the iteration for n times of the inverse
of the relation.

function ()

[X]
: (X ↔ X)× Z→ (X ↔ X)

∀ r : X ↔ X ; n : N • r n = iter n r

iter n r may be written as r n .

106 c©ISO/IEC 2002—All rights reserved

B Mathematical toolkit ISO/IEC 13568:2002(E)

B.8.3 Number of members of a set

function (#)

[X]
: FX → N

∀ a : FX • #a = (µn : N | (∃ f : 1 . . n � a • ran f = a))

The number of members of a finite set is the upper limit of the number range starting at 1 that can be put into
bijection with the set.

B.8.4 Minimum

function (min)

min : PA 7→ A

PZC (min) = { a : PZ; m : Z | m ∈ a ∧ (∀n : a • m ≤ n) • a 7→ m }

If a set of integers has a member that is less than or equal to all members of that set, that member is its minimum.

B.8.5 Maximum

function (max)

max : PA 7→ A

PZC (max) = { a : PZ; m : Z | m ∈ a ∧ (∀n : a • n ≤ m) • a 7→ m }

If a set of integers has a member that is greater than or equal to all members of that set, that member is its
maximum.

B.8.6 Finite sequences

generic (seq)

seq X == { f : N 7 7→ X | dom f = 1 . .#f }

A finite sequence is a finite indexed set of values of the same type, whose domain is a contiguous set of positive
integers starting at 1.

seq X is the set of all finite sequences of values of X , that is, of finite functions from the set 1 . . n, for some n,
to elements of X .

B.8.7 Non-empty finite sequences

seq1 X == seq X \ {∅}

seq1 X is the set of all non-empty finite sequences of values of X .

B.8.8 Injective sequences

generic (iseq)

iseq X == seq X ∩ (N 7� X)

iseq X is the set of all injective finite sequences of values of X , that is, of finite sequences over X that are also
injections.

c©ISO/IEC 2002—All rights reserved 107

ISO/IEC 13568:2002(E) B Mathematical toolkit

B.8.9 Sequence brackets

function (〈 , , 〉)

〈 , , 〉[X] == λ s : seq X • s

The brackets 〈 and 〉 can be used for enumerated sequences.

B.8.10 Concatenation

function 30 leftassoc (a)

[X]
a : seq X × seq X → seq X

∀ s, t : seq X • s a t = s ∪ { n : dom t • n + #s 7→ t n }

Concatenation is a function of a pair of finite sequences of values of the same type whose result is a sequence that
begins with all elements of the first sequence and continues with all elements of the second sequence.

B.8.11 Reverse

[X]
rev : seq X → seq X

∀ s : seq X • rev s = λn : dom s • s(#s − n + 1)

The reverse of a sequence is the sequence obtained by taking its elements in the opposite order.

B.8.12 Head of a sequence

[X]
head : seq1 X → X

∀ s : seq1 X • head s = s 1

If s is a non-empty sequence of values, then head s is the value that is first in the sequence.

B.8.13 Last of a sequence

[X]
last : seq1 X → X

∀ s : seq1 X • last s = s(#s)

If s is a non-empty sequence of values, then last s is the value that is last in the sequence.

B.8.14 Tail of a sequence

[X]
tail : seq1 X → seq X

∀ s : seq1 X • tail s = λn : 1 . . (#s − 1) • s(n + 1)

If s is a non-empty sequence of values, then tail s is the sequence of values that is obtained from s by discarding
the first element and renumbering the remainder.

108 c©ISO/IEC 2002—All rights reserved

B Mathematical toolkit ISO/IEC 13568:2002(E)

B.8.15 Front of a sequence

[X]
front : seq1 X → seq X

∀ s : seq1 X • front s = {#s} −C s

If s is a non-empty sequence of values, then front s is the sequence of values that is obtained from s by discarding
the last element.

B.8.16 Squashing

[X]
squash : (Z 7 7→ X)→ seq X

∀ f : Z 7 7→ X • squash f = { p : f • #{ i : dom f | i ≤ p.1 } 7→ p.2 }

squash takes a finite function f : Z 7 7→ X and renumbers its domain to produce a finite sequence.

B.8.17 Extraction

function 45 rightassoc (�)

[X]
� : PZ× seq X → seq X

∀ a : PZ; s : seq X • a � s = squash(a C s)

The extraction of a set a of indices from a sequence is the sequence obtained from the original by discarding any
indices that are not in the set a, then renumbering the remainder.

B.8.18 Filtering

function 40 leftassoc (�)

[X]
� : seq X × PX → seq X

∀ s : seq X ; a : PX • s � a = squash(s B a)

The filter of a sequence by a set a is the sequence obtained from the original by discarding any members that are
not in the set a, then renumbering the remainder.

B.8.19 Prefix relation

relation (prefix)

[X]
prefix : seq X ↔ seq X

∀ s, t : seq X • s prefix t ⇔ s ⊆ t

A sequence s is a prefix of another sequence t if it forms the front portion of t .

c©ISO/IEC 2002—All rights reserved 109

ISO/IEC 13568:2002(E) B Mathematical toolkit

B.8.20 Suffix relation

relation (suffix)

[X]
suffix : seq X ↔ seq X

∀ s, t : seq X • s suffix t ⇔ (∃ u : seq X • u a s = t)

A sequence s is a suffix of another sequence t if it forms the end portion of t .

B.8.21 Infix relation

relation (infix)

[X]
infix : seq X ↔ seq X

∀ s, t : seq X • s infix t ⇔ (∃ u, v : seq X • u a s a v = t)

A sequence s is an infix of another sequence t if it forms a mid portion of t .

B.8.22 Distributed concatenation

[X]
a/ : seq seq X → seq X

a/ 〈 〉 = 〈 〉
∀ s : seq X • a/ 〈s〉 = s

∀ q , r : seq seq X • a/(q a r) = (a/ q)a (a/ r)

The distributed concatenation of a sequence t of sequences of values of type X is the sequence of values of type
X that is obtained by concatenating the members of t in order.

B.9 Standard toolkit

section standard toolkit parents sequence toolkit

The standard toolkit contains the definitions of section sequence toolkit (and implicitly those of its ancestral
sections).

110 c©ISO/IEC 2002—All rights reserved

C Organisation by concrete syntax production ISO/IEC 13568:2002(E)

Annex C
(normative)

Organisation by concrete syntax production

C.1 Introduction

This annex duplicates some of the definitions presented in the normative clauses, but re-organised by concrete
syntax production. This re-organisation provides no suitable place to accommodate the material listed in the rest
of this introduction. That material is consequently omitted from this annex.

a) From Concrete syntax, the rules defining:

1) Formals, used in Generic axiomatic description paragraph, Generic schema paragraph, Generic horizon-
tal definition paragraph, and Generic conjecture paragraph;

2) DeclName, used in Branch, Schema hiding expression, Schema renaming expression, Colon declaration
and Equal declaration;

3) RefName, used in Reference expression, Generic instantiation expression, and Binding selection expres-
sion;

4) OpName and its auxiliaries, used in RefName and DeclName;

5) ExpSep and ExpressionList, used in auxiliaries of Relation operator application predicates and Func-
tion and generic operator application expressions;

6) and also the operator precedences and associativities and additional syntactic restrictions.

b) From Characterisation rules:

1) Characteristic tuple.

c) From Prelude:

1) its text is relevant not just to number literal expressions but also to the list arguments in Relation
operator application predicates and Function and generic operator application expressions.

d) From Syntactic transformation rules:

1) Name and ExpressionList.

e) From Type inference rules:

1) Generic type instantiation, carrier set and implicit instantiation.

2) Summary of scope rules.

f) From Semantic relations:

1) all the relations for Type are omitted.

c©ISO/IEC 2002—All rights reserved 111

ISO/IEC 13568:2002(E) C Organisation by concrete syntax production

Also, the description of the overall effect of a phase, or how the phase operates, is generally omitted from this
annex.

Moreover, some of the phases and representations are entirely omitted here, namely Mark-ups, Z characters, Lexis
and Annotated syntax.

C.2 Specification

C.2.1 Introduction

Specification is the start symbol of the syntax. A Specification can be either a sectioned specification or
an anonymous specification. A sectioned specification comprises a sequence of named sections. An anonymous
specification comprises a single anonymous section.

C.2.2 Sectioned specification

C.2.2.1 Syntax

Specification = { Section }
| ...
;

C.2.2.2 Type

{} `S sprelude o
o Γ δ `

S
s o

o Γ ... δn `
S
sn o

o Γn
`Z s o

o Γ ... sn o
o Γn

 δ = {prelude 7→ Γ}
...

δn = δn− ∪ {in− 7→ Γn−}

where in− is the name of section sn−, and none of the sections s ... sn are named prelude.

Each section is typechecked in an environment formed from preceding sections, and is annotated with an envi-
ronment that it establishes.

NOTE The section-type environment established by the prelude section is as follows.

Γ = (A, (prelude,P(GIVEN A)));
(N, (prelude,P(GIVEN A)));
(number literal 0, (prelude, (GIVEN A)));
(number literal 1, (prelude, (GIVEN A)));
(1+1, (prelude,P(((GIVEN A)× (GIVEN A))× (GIVEN A))))

If one of the sections s ... sn is named prelude, then the same type inference rule applies except that the type
subsequent for the prelude section is omitted.

C.2.2.3 Semantics

[[s ... sn]]Z = ([[ZED section prelude parents END ...]]S o
9 [[s]]S o

9 ... o
9 [[sn]]S) ∅

The meaning of the Z specification s ... sn is the function from sections’ names to their sets of models formed
by starting with the empty function and extending that with a maplet from a section’s name to its set of models
for each section in the specification, starting with the prelude.

To determine [[ZED section prelude parents END ...]]Z another prelude shall not be prefixed onto it.

NOTE The meaning of a specification is not the meaning of its last section, so as to permit several meaningful units
within a single document.

112 c©ISO/IEC 2002—All rights reserved

C Organisation by concrete syntax production ISO/IEC 13568:2002(E)

C.2.3 Anonymous specification

C.2.3.1 Syntax

Specification = ...
| { Paragraph }
;

C.2.3.2 Transformation

The anonymous specification D ... Dn is semantically equivalent to the sectioned specification comprising a
single section containing those paragraphs with the mathematical toolkit of annex B as its parent.

D ... Dn =⇒ Mathematical toolkit ZED section Specification parents standard toolkit END D ... Dn

In this transformation, Mathematical toolkit denotes the entire text of annex B. The name given to the section
is not important: it need not be Specification, though it shall not be prelude or that of any section of the
mathematical toolkit.

C.3 Section

C.3.1 Introduction

A Section can be either an inheriting section or a base section. An inheriting section gathers together the
paragraphs of parent sections with new paragraphs. A base section is like an inheriting section but has no
parents.

C.3.2 Inheriting section

C.3.2.1 Syntax

Section = ZED , section , NAME , parents , [NAME , { ,-tok , NAME }] , END ,
{ Paragraph }

| ...
;

C.3.2.2 Type

β `
D
D

o
o σ ... βn− `

D
Dn

o
o σn

Λ `S ZED section i
parents i, ..., im END

D
o
o σ ... Dn

o
o σn o

o Γ

i 6∈ dom Λ
{i, ..., im} ⊆ dom Λ
γ− = if i = prelude then {} else Λ prelude
γ = γ− ∪ Λ i ∪ ... ∪ Λ im
β = γ o

9 second
disjoint 〈dom σ, ..., dom σn〉
Γ ∈ (7→)
Γ = γ ∪ {j : NAME; τ : Type | j 7→ τ ∈ σ ∪ ... ∪ σn • j 7→ (i, τ)}
β = β ∪ σ

...
βn− = βn− ∪ σn−

Taking the side-conditions in order, this type inference rule ensures that:

a) the name of the section, i, is different from that of any previous section;

c©ISO/IEC 2002—All rights reserved 113

ISO/IEC 13568:2002(E) C Organisation by concrete syntax production

b) the names in the parents list are names of known sections;

c) the section environment of the prelude is included if the section is not itself the prelude;

d) the section-type environment γ is formed from those of the parents;

e) the type environment β is determined from the section-type environment γ;

f) there is no global redefinition between any pair of paragraphs of the section (the sets of names in their
signatures are disjoint);

g) a name which is common to the environments of multiple parents shall have originated in a common ancestral
section, and a name introduced by a paragraph of this section shall not also be introduced by another
paragraph or parent section (all ensured by the combined environment being a function);

h) the annotation of the section is an environment formed from those of its parents extended according to the
signatures of its paragraphs;

i) and the type environment in which a paragraph is typechecked is formed from that of the parent sections
extended with the signatures of the preceding paragraphs of this section.

NOTE 1 Ancestors need not be immediate parents, and a section cannot be amongst its own ancestors (no cycles
in the parent relation).

NOTE 2 The name of a section can be the same as the name of a variable introduced in a declaration—the two are
not confused.

C.3.2.3 Semantics

The prelude section, as defined in clause 11, is treated specially, as it is the only one that does not have prelude
as an implicit parent.

[[ZED section prelude parents END D ... Dn]]S

=
λ T : SectionModels • {prelude 7→ ([[D]]D o

9 ... o
9 [[Dn]]D) (| {∅} |)}

The meaning of the prelude section is given by that constant function which, whatever function from sections’
names and their sets of models it is given, returns the singleton set mapping the name prelude to its set of models.
The set of models is that to which the set containing an empty model is related by the composition of the relations
between models that denote the meanings of each of the prelude’s paragraphs—see clause 11 for details of those
paragraphs.

NOTE One model of the prelude section can be written as follows.

{A 7→ A,

N 7→ N,

number literal 0 7→ 0,

number literal 1 7→ 1,

+ 7→ {((0, 0), 0), ((0, 1), 1), ((1, 0), 1), ((1, 1), 2), ...}}

The behaviour of (+) on non-natural numbers, e.g. reals, has not been defined at this point, so the set of models
for the prelude section includes alternatives for every possible extended behaviour of addition.

[[ZED section i parents i, ..., im END D ... Dn]]S

=
λ T : SectionModels • T ∪ {i 7→

([[D]]D o
9...o9[[Dn]]D) (| {M : T prelude; M : T i; ...; Mm : T im; M : Model | M = M∪M∪...∪Mm • M} |)}

114 c©ISO/IEC 2002—All rights reserved

C Organisation by concrete syntax production ISO/IEC 13568:2002(E)

The meaning of a section other than the prelude is the extension of a function from sections’ names to their sets
of models with a maplet from the given section’s name to its set of models. The given section’s set of models
is that to which the union of the models of the section’s parents is related by the composition of the relations
between models that denote the meanings of each of the section’s paragraphs.

C.3.3 Base section

C.3.3.1 Syntax

Section = ...
| ZED , section , NAME , END , { Paragraph }
;

C.3.3.2 Transformation

The base section ZED section i END D ... Dn is semantically equivalent to the inheriting section that inherits
from no parents (bar prelude).

ZED section i END D ... Dn =⇒ ZED section i parents END D ... Dn

C.4 Paragraph

C.4.1 Introduction

A Paragraph can introduce new names into the models, and can constrain the values associated with names. A
Paragraph can be any of given types, axiomatic description, schema definition, generic axiomatic description,
generic schema definition, horizontal definition, generic horizontal definition, generic operator definition, free
types, conjecture, generic conjecture, or operator template.

C.4.2 Given types

C.4.2.1 Syntax

Paragraph = ZED , [-tok , NAME , { ,-tok , NAME } ,]-tok , END
| ...
;

C.4.2.2 Type

Σ `D ZED [i, ..., in] END o
o σ

(
{i, ..., in} = n
σ = i : P(GIVEN i); ...; in : P(GIVEN in)

)
In a given types paragraph, there shall be no duplication of names. The annotation of the paragraph is a signature
associating the given type names with powerset types.

C.4.2.3 Semantics

The given types paragraph ZED [i, ..., in] END introduces unconstrained global names.

[[ZED [i, ..., in] END]]D = {M : Model ; w1, ..., wn : W
• M 7→ M ∪ {i 7→ w1, ..., in 7→ wn}

∪ {i decor ♥ 7→ w1, ..., in decor ♥ 7→ wn}}

c©ISO/IEC 2002—All rights reserved 115

ISO/IEC 13568:2002(E) C Organisation by concrete syntax production

It relates a model M to that model extended with associations between the names of the given types and semantic
values chosen to represent their carrier sets. Associations for names decorated with the reserved stroke ♥ are also
introduced, so that references to them from given types (see 15.2.6.1) can avoid being captured.

C.4.3 Axiomatic description

C.4.3.1 Syntax

Paragraph = ...
| AX , SchemaText , END
| ...
;

C.4.3.2 Type

Σ `E e o
o τ

Σ `D AX e o
o τ END o

o σ
(τ = P[σ])

In an axiomatic description paragraph AX e END, the expression e shall be a schema. The annotation of the
paragraph is the signature of that schema.

C.4.3.3 Semantics

The axiomatic description paragraph AX e END introduces global names and constraints on their values.

[[AX e END]]D = {M : Model ; t : W | t ∈ [[e]]EM • M 7→ M ∪ t}

It relates a model M to that model extended with a binding t of the schema that is the value of e in model M.

C.4.4 Schema definition

C.4.4.1 Syntax

Paragraph = ...
| SCH , NAME , SchemaText , END
| ...
;

C.4.4.2 Transformation

The schema definition paragraph SCH i t END introduces the global name i, associating it with the schema that
is the value of t.

SCH i t END =⇒ AX [i == t] END

The paragraph is semantically equivalent to the axiomatic description paragraph whose sole declaration associates
the schema’s name with the expression resulting from syntactic transformation of the schema text.

116 c©ISO/IEC 2002—All rights reserved

C Organisation by concrete syntax production ISO/IEC 13568:2002(E)

C.4.5 Generic axiomatic description

C.4.5.1 Syntax

Paragraph = ...
| GENAX , [-tok , Formals ,]-tok , SchemaText , END
| ...
;

C.4.5.2 Type

Σ ⊕ {i 7→ P(GENTYPE i), ..., in 7→ P(GENTYPE in)} `E e o
o τ

Σ `D GENAX [i, ..., in] e o
o τ END o

o σ

 # {i, ..., in} = n
τ = P[β]
σ = λ j : dom β • [i, ..., in] (β j)

In a generic axiomatic description paragraph GENAX [i, ..., in] e END, there shall be no duplication of names within
the generic parameters. The expression e is typechecked, in an environment overridden by the generic parameters,
and shall be a schema. The annotation of the paragraph is formed from the signature of that schema, having the
same names but associated with types that are generic.

C.4.5.3 Semantics

The generic axiomatic description paragraph GENAX [i, ..., in] e END introduces global names and constraints on
their values, with generic parameters that have to be instantiated (by sets) whenever those names are referenced.

[[GENAX [i, ..., in] (e o
o P[j : τ; ...; jm : τm]) END]]D =

{M : Model ; u : W ↑ n →W

| ∀ w1, ..., wn : W • ∃ w : W •
u (w1, ..., wn) ∈ w
∧ (M ⊕ {i 7→ w1, ..., in 7→ wn} ∪ {i decor ♠ 7→ w1, ..., in decor ♠ 7→ wn}) 7→ w ∈ [[e]]E

• M 7→ M ∪ λ y : {j, ..., jm} • λ x : W ↑ n • u x y}

Given a model M and generic argument sets w1, ..., wn , the semantic value of the schema e in that model
overridden by the association of the generic parameter names with those sets is w . All combinations of generic
argument sets are considered. The function u maps the generic argument sets to a binding in the schema w . The
paragraph relates the model M to that model extended with the binding that associates the names of the schema
e (namely j, ..., jm) with the corresponding value in the binding resulting from application of u to arbitrary
instantiating sets x . Associations for names decorated with the reserved stroke ♠ are also introduced whilst
determining the semantic value of e, so that references to them from generic types (see 15.2.6.2) can avoid being
captured.

C.4.6 Generic schema definition

C.4.6.1 Syntax

Paragraph = ...
| GENSCH , NAME , [-tok , Formals ,]-tok , SchemaText , END
| ...
;

c©ISO/IEC 2002—All rights reserved 117

ISO/IEC 13568:2002(E) C Organisation by concrete syntax production

C.4.6.2 Transformation

The generic schema definition paragraph GENSCH i [i, ..., in] t END can be instantiated to produce a schema
definition paragraph.

GENSCH i [i, ..., in] t END =⇒ GENAX [i, ..., in] [i == t] END

It is semantically equivalent to the generic axiomatic description paragraph with the same generic parameters and
whose sole declaration associates the schema’s name with the expression resulting from syntactic transformation
of the schema text.

C.4.7 Horizontal definition

C.4.7.1 Syntax

Paragraph = ...
| ZED , DeclName , == , Expression , END
| ...
;

C.4.7.2 Transformation

The horizontal definition paragraph ZED i == e END introduces the global name i, associating with it the value
of e.

ZED i == e END =⇒ AX [i == e] END

It is semantically equivalent to the axiomatic description paragraph that introduces the same single declaration.

C.4.8 Generic horizontal definition

C.4.8.1 Syntax

Paragraph = ...
| ZED , NAME , [-tok , Formals ,]-tok , == , Expression , END
| ...
;

C.4.8.2 Transformation

The generic horizontal definition paragraph ZED i [i, ..., in] == e END can be instantiated to produce a horizontal
definition paragraph.

ZED i [i, ..., in] == e END =⇒ GENAX [i, ..., in] [i == e] END

It is semantically equivalent to the generic axiomatic description paragraph with the same generic parameters
and that introduces the same single declaration.

118 c©ISO/IEC 2002—All rights reserved

C Organisation by concrete syntax production ISO/IEC 13568:2002(E)

C.4.9 Generic operator definition

C.4.9.1 Syntax

Paragraph = ...
| ZED , GenName , == , Expression , END
| ...
;

GenName = PrefixGenName
| PostfixGenName
| InfixGenName
| NofixGenName
;

PrefixGenName = PRE , NAME
| L , { NAME , (ES | SS) } , NAME , (ERE | SRE) , NAME
;

PostfixGenName = NAME , POST
| NAME , EL , { NAME , (ES | SS) } , NAME , (ER | SR)
;

InfixGenName = NAME , I , NAME
| NAME , EL , { NAME , (ES | SS) } , NAME , (ERE | SRE) , NAME
;

NofixGenName = L , { NAME , (ES | SS) } , NAME , (ER | SR) ;

C.4.9.2 Transformation

All generic names are transformed to juxtapositions of NAMEs and generic parameter lists. This causes the generic
operator definition paragraphs in which they appear to become generic horizontal definition paragraphs, and thus
be amenable to further syntactic transformation.

Each resulting NAME shall be one for which there is an operator template paragraph in scope (see 12.2.8).

C.4.9.3 PrefixGenName

pre i =⇒ pre1 [i]
ln i ess ... in− essn− in− ere in =⇒ ln1ess...1essn−1ere1 [i, ..., in−, in−, in]
ln i ess ... in− essn− in− sre in =⇒ ln1ess...1essn−1sre1 [i, ..., in−, in−, in]

C.4.9.4 PostfixGenName

i post =⇒ 1post [i]
iel i ess ... in− essn− in er =⇒ 1el1ess...1essn−1er [i, i, ..., in−, in]
iel i ess ... in− essn− in sr =⇒ 1el1ess...1essn−1sr [i, i, ..., in−, in]

c©ISO/IEC 2002—All rights reserved 119

ISO/IEC 13568:2002(E) C Organisation by concrete syntax production

C.4.9.5 InfixGenName

iin i =⇒ 1in1 [i, i]
iel i ess ... in− essn− in− ere in =⇒ 1el1ess...1essn−1ere1 [i, i, ..., in−, in−, in]
iel i ess ... in− essn− in− sre in =⇒ 1el1ess...1essn−1sre1 [i, i, ..., in−, in−, in]

C.4.9.6 NofixGenName

ln i ess ... in− essn− in er =⇒ ln1ess...1essn−1er [i, ..., in−, in]
ln i ess ... in− essn− in sr =⇒ ln1ess...1essn−1sr [i, ..., in−, in]

C.4.10 Free types

C.4.10.1 Syntax

Paragraph = ...
| ZED , Freetype , { & , Freetype } , END
| ...
;

Freetype = NAME , ::= , Branch , { |-tok , Branch } ; (* free type *)

Branch = DeclName , [〈〈 , Expression , 〉〉] ; (* element or injection *)

C.4.10.2 Transformation

The transformation of free types paragraphs is done in two stages. First, the branches are permuted to bring
elements to the front and injections to the rear.

... | g〈〈e〉〉 | h | ... =⇒ ... | h | g〈〈e〉〉 | ...

Exhaustive application of this syntactic transformation rule effects a sort.

The second stage requires implicit generic instantiations to have been filled in, which is done during typechecking
(see 13.2.3.3). Hence that second stage is delayed until after typechecking, where it appears in the form of a
semantic transformation rule (see 14.2.3.1).

120 c©ISO/IEC 2002—All rights reserved

C Organisation by concrete syntax production ISO/IEC 13568:2002(E)

C.4.10.3 Type

β `E e o
o τ ... β `E e n o

o τ n
...

β `E er o
o τr ... β `E er nr o

o τr nr

Σ `D ZED

f ::= h | ... | hm |
g 〈〈e o

o τ 〉〉 |
... |

g n〈〈e n o
o τ n〉〉 &

... &
fr ::= hr | ... | hrmr |

gr 〈〈er o
o τr 〉〉 |

... |
gr nr 〈〈er nr o

o τr nr 〉〉

END o
o σ

{f, h , ..., hm , g , ..., g n ,
...,

fr, hr , ..., hrmr , gr , ..., gr nr}
= r + m1 + ...+ mr + n1 + ...+ nr

β = Σ ⊕ {f 7→ P(GIVEN f), ..., fr 7→ P(GIVEN fr)}
τ = Pα ... τ n = Pα n

...
τr = Pαr ... τr nr = Pαr nr
σ = f : P(GIVEN f);

h : GIVEN f; ...; hm : GIVEN f;
g : P(τ × GIVEN f);

...;
g n : P(τ n × GIVEN f);

...;
fr : P(GIVEN fr);

hr : GIVEN fr; ...; hrmr : GIVEN fr;
gr : P(τr × GIVEN fr);

...;
gr nr : P(τr nr × GIVEN fr)

In a free types paragraph, the names of the free types, elements and injections shall all be different. The expressions
representing the domains of the injections are typechecked in an environment overridden by the names of the free
types, and shall all be sets. The annotation of the paragraph is the signature whose names are those of all the
free types, the elements, and the injections, each associated with the corresponding type.

C.4.10.4 Semantics

A free types paragraph is semantically equivalent to the sequence of given type paragraph and axiomatic definition
paragraph defined here.

NOTE 1 This exploits notation that is not present in the annotated syntax for the purpose of abbreviation.

ZED
f ::= h | ... | hm | g 〈〈e 〉〉 | ... | g n〈〈e n〉〉
& ... &
fr ::= hr | ... | hrmr | gr 〈〈er 〉〉 | ... | gr nr 〈〈er nr 〉〉
END

=⇒

ZED
[f, ..., fr]
END

c©ISO/IEC 2002—All rights reserved 121

ISO/IEC 13568:2002(E) C Organisation by concrete syntax production

AX
h , ..., hm : f
...
hr , ..., hrmr : fr
g : P(e × f); ...; g n : P(e n × f)
...
gr : P(er × fr); ...; gr nr : P(er nr × fr)
|
(∀ u : e • ∃1 x : g • x . 1 = u) ∧ ... ∧ (∀ u : e n • ∃1 x : g n • x . 1 = u)
... ∧
(∀ u : er • ∃1 x : gr • x . 1 = u) ∧ ... ∧ (∀ u : er nr • ∃1 x : gr nr • x . 1 = u)

(∀ u, v : e | g u = g v • u = v) ∧ ... ∧ (∀ u, v : e n | g nu = g nv • u = v)
... ∧
(∀ u, v : er | gr u = gr v • u = v) ∧ ... ∧ (∀ u, v : er nr | gr nru = gr nrv • u = v)

∀ b, b : N •
(∀ w : f |

(b = 1 ∧ w = h ∨ ... ∨ b = m1 ∧ w = hm ∨
b = m1 + 1 ∧ w ∈ {x : g • x . 2} ∨ ... ∨ b = m1 + n1 ∧ w ∈ {x : g n • x . 2})

∧ (b = 1 ∧ w = h ∨ ... ∨ b = m1 ∧ w = hm ∨
b = m1 + 1 ∧ w ∈ {x : g • x . 2} ∨ ... ∨ b = m1 + n1 ∧ w ∈ {x : g n • x . 2}) •

b = b) ∧
... ∧
(∀ w : fr |

(b = 1 ∧ w = hr ∨ ... ∨ b = mr ∧ w = hrmr ∨
b = mr + 1 ∧ w ∈ {x : gr • x . 2} ∨ ... ∨ b = mr + nr ∧ w ∈ {x : gr nr • x . 2})

∧ (b = 1 ∧ w = hr ∨ ... ∨ b = mr ∧ w = hrmr ∨
b = mr + 1 ∧ w ∈ {x : gr • x . 2} ∨ ... ∨ b = mr + nr ∧ w ∈ {x : gr nr • x . 2}) •

b = b)

∀ w : P f; ...; wr : P fr |
h ∈ w ∧ ... ∧ hm ∈ w ∧
... ∧
hr ∈ wr ∧ ... ∧ hrmr ∈ wr ∧
(∀ y : (µ f == w; ...; fr == wr • e) • g y ∈ w) ∧
... ∧ (∀ y : (µ f == w; ...; fr == wr • e n) • g ny ∈ w) ∧
... ∧
(∀ y : (µ f == w; ...; fr == wr • er) • gr y ∈ wr) ∧
... ∧ (∀ y : (µ f == w; ...; fr == wr • er nr) • gr nry ∈ wr) •

w = f ∧ ... ∧ wr = fr
END

The type names are introduced by the given types paragraph. The elements are declared as members of their cor-
responding free types. The injections are declared as functions from values in their domains to their corresponding
free type.

The first of the four blank-line separated predicates is the total functionality property. It ensures that for every
injection, the injection is functional at every value in its domain.

122 c©ISO/IEC 2002—All rights reserved

C Organisation by concrete syntax production ISO/IEC 13568:2002(E)

The second of the four blank-line separated predicates is the injectivity property. It ensures that for every
injection, any pair of values in its domain for which the injection returns the same value shall be a pair of equal
values (hence the name injection).

The third of the four blank-line separated predicates is the disjointness property. It ensures that for every free
type, every pair of values of the free type are equal only if they are the same element or are returned by application
of the same injection to equal values.

The fourth of the four blank-line separated predicates is the induction property. It ensures that for every free
type, its members are its elements, the values returned by its injections, and nothing else.

The generated µ expressions in the induction property are intended to effect substitutions of all references to the
free type names, including any such references within generic instantiation lists in the e expressions.

NOTE 2 That is why this is a semantic transformation not a syntactic one: all implicit generic instantiations shall
have been made explicit before it is applied.

NOTE 3 The right-hand side of this transformation could have been expressed using notation from the mathematical
toolkit, as follows, but for the desire to define the Z core language separately from the mathematical toolkit.

ZED

[f, ..., fr]

END

AX

h , ..., hm : f
...

hr , ..., hrmr : fr
g : e � f; ...; g n : e n � f
...

gr : er � fr; ...; gr nr : er nr � fr
|
disjoint〈{h }, ..., {hm}, ran g , ..., ran g n〉
...

disjoint〈{hr }, ..., {hrmr}, ran gr , ..., ran gr nr 〉
∀ w : P f; ...; wr : P fr |

{h , ..., hm} ∪ g (| µ f == w; ...; fr == wr • e |)
∪... ∪ g n(| µ f == w; ...; fr == wr • e n |) ⊆ w ∧

... ∧
{hr , ..., hrmr} ∪ gr (| µ f == w; ...; fr == wr • er |)

∪... ∪ gr nr (| µ f == w; ...; fr == wr • er nr |) ⊆ wr •
w = f ∧ ... ∧ wr = fr

END

C.4.11 Conjecture

C.4.11.1 Syntax

Paragraph = ...
| ZED , `? , Predicate , END
| ...
;

c©ISO/IEC 2002—All rights reserved 123

ISO/IEC 13568:2002(E) C Organisation by concrete syntax production

C.4.11.2 Type

Σ `P p

Σ `D ZED `? p END o
o σ

(σ = ε)

In a conjecture paragraph ZED `? p END, the predicate p shall be well-typed. The annotation of the paragraph is
the empty signature.

C.4.11.3 Semantics

The conjecture paragraph ZED `? p END expresses a property that may logically follow from the specification. It
may be a starting point for a proof.

[[ZED `? p END]]D = id Model

It relates a model to itself: the truth of p in a model does not affect the meaning of the specification.

C.4.12 Generic conjecture

C.4.12.1 Syntax

Paragraph = ...
| ZED , [-tok , Formals ,]-tok , `? , Predicate , END
| ...
;

C.4.12.2 Type

Σ ⊕ {i 7→ P(GENTYPE i), ..., in 7→ P(GENTYPE in)} `P p

Σ `D ZED [i, ..., in] `? p END o
o σ

(
{i, ..., in} = n
σ = ε

)
In a generic conjecture paragraph ZED [i, ..., in] `? p END, there shall be no duplication of names within the
generic parameters. The predicate p shall be well-typed in an environment overridden by the generic parameters.
The annotation of the paragraph is the empty signature.

C.4.12.3 Semantics

The generic conjecture paragraph ZED [i, ..., in] `? p END expresses a generic property that may logically follow
from the specification. It may be a starting point for a proof.

[[ZED [i, ..., in] `? p END]]D = id Model

It relates a model to itself: the truth of p in a model does not affect the meaning of the specification.

C.4.13 Operator template

An operator template has only syntactic significance: it notifies the reader to treat all occurrences in this section
of the words in the template, with whatever strokes they are decorated, as particular prefix, infix, postfix or
nofix names. The category of the operator—relation, function, or generic—determines how applications of the
operator are interpreted— as relational predicates, application expressions, or generic instantiation expressions
respectively.

124 c©ISO/IEC 2002—All rights reserved

C Organisation by concrete syntax production ISO/IEC 13568:2002(E)

C.4.13.1 Syntax

Paragraph = ...
| ZED , OperatorTemplate , END
;

OperatorTemplate = relation , Template
| function , CategoryTemplate
| generic , CategoryTemplate
;

CategoryTemplate = PrefixTemplate
| PostfixTemplate
| Prec , Assoc , InfixTemplate
| NofixTemplate
;

Prec = NUMERAL ;

Assoc = leftassoc
| rightassoc
;

Template = PrefixTemplate
| PostfixTemplate
| InfixTemplate
| NofixTemplate
;

PrefixTemplate = (-tok , PrefixName ,)-tok
| (-tok , P , ,)-tok
;

PostfixTemplate = (-tok , PostfixName ,)-tok ;

InfixTemplate = (-tok , InfixName ,)-tok ;

NofixTemplate = (-tok , NofixName ,)-tok ;

C.5 Predicate

C.5.1 Introduction

A Predicate expresses constraints between the values associated with names. A Predicate can be any of uni-
versal quantification, existential quantification, unique existential quantification, newline conjunction, semicolon
conjunction, equivalence, implication, disjunction, conjunction, negation, relation operator application, member-
ship, schema predicate, truth, falsity, or parenthesized predicate.

c©ISO/IEC 2002—All rights reserved 125

ISO/IEC 13568:2002(E) C Organisation by concrete syntax production

C.5.2 Universal quantification

C.5.2.1 Syntax

Predicate = ∀ , SchemaText , • , Predicate
| ...
;

C.5.2.2 Type

Σ `E e o
o τ Σ ⊕ β `P p

Σ `P ∀ (e o
o τ) • p

(τ = P[β])

In a universal quantification predicate ∀ e • p, expression e shall be a schema, and predicate p shall be well-typed
in the environment overridden by the signature of schema e.

C.5.2.3 Semantics

The universal quantification predicate ∀ e • p is true if and only if predicate p is true for all bindings of the
schema e.

[[∀ e • p]]P = {M : Model | ∀ t : [[e]]EM • M ⊕ t ∈ [[p]]P • M}

In terms of the semantic universe, it is true in those models for which p is true in that model overridden by all
bindings in the semantic value of e, and is false otherwise.

C.5.3 Existential quantification

C.5.3.1 Syntax

Predicate = ...
| ∃ , SchemaText , • , Predicate
| ...
;

C.5.3.2 Transformation

The existential quantification predicate ∃ t • p is true if and only if p is true for at least one value of t.

∃ t • p =⇒ ¬ ∀ t • ¬ p

It is semantically equivalent to p being false for not all values of t.

C.5.4 Unique existential quantification

C.5.4.1 Syntax

Predicate = ...
| ∃1 , SchemaText , • , Predicate
| ...
;

C.5.4.2 Type

Σ `E e o
o τ Σ ⊕ β `P p

Σ `P ∃1 (e o
o τ) • p

(τ = P[β])

126 c©ISO/IEC 2002—All rights reserved

C Organisation by concrete syntax production ISO/IEC 13568:2002(E)

In a unique existential quantification predicate ∃1 e • p, expression e shall be a schema, and predicate p shall be
well-typed in the environment overridden by the signature of schema e.

C.5.4.3 Semantics

The unique existential quantification predicate ∃1 e • p is true if and only if there is exactly one value for e for
which p is true.

∃1 e • p =⇒ ¬ (∀ e • ¬ (p ∧ (∀ [e | p]./ • θ e = θ e ./)))

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

∃1 e • p =⇒ ∃ e • p ∧ (∀ [e | p]./ • θ e = θ e ./)

It is semantically equivalent to there existing at least one value for e for which p is true and all those values for
which it is true being the same.

C.5.5 Newline conjunction

C.5.5.1 Syntax

Predicate = ...
| Predicate , NL , Predicate
| ...
;

C.5.5.2 Transformation

The newline conjunction predicate p NL p is true if and only if both its predicates are true.

p NL p =⇒ p ∧ p

It is semantically equivalent to the conjunction predicate p ∧ p.

C.5.6 Semicolon conjunction

C.5.6.1 Syntax

Predicate = ...
| Predicate , ; -tok , Predicate
| ...
;

C.5.6.2 Transformation

The semicolon conjunction predicate p; p is true if and only if both its predicates are true.

p; p =⇒ p ∧ p

It is semantically equivalent to the conjunction predicate p ∧ p.

c©ISO/IEC 2002—All rights reserved 127

ISO/IEC 13568:2002(E) C Organisation by concrete syntax production

C.5.7 Equivalence

C.5.7.1 Syntax

Predicate = ...
| Predicate , ⇔ , Predicate
| ...
;

C.5.7.2 Transformation

The equivalence predicate p ⇔ p is true if and only if both p and p are true or neither is true.

p ⇔ p =⇒ (p ⇒ p) ∧ (p ⇒ p)

It is semantically equivalent to each of p and p being true if the other is true.

C.5.8 Implication

C.5.8.1 Syntax

Predicate = ...
| Predicate , ⇒ , Predicate
| ...
;

C.5.8.2 Transformation

The implication predicate p ⇒ p is true if and only if p is true if p is true.

p ⇒ p =⇒ ¬ p ∨ p

It is semantically equivalent to p being false disjoined with p being true.

C.5.9 Disjunction

C.5.9.1 Syntax

Predicate = ...
| Predicate , ∨ , Predicate
| ...
;

C.5.9.2 Transformation

The disjunction predicate p ∨ p is true if and only if at least one of p and p is true.

p ∨ p =⇒ ¬ (¬ p ∧ ¬ p)

It is semantically equivalent to not both of p and p being false.

128 c©ISO/IEC 2002—All rights reserved

C Organisation by concrete syntax production ISO/IEC 13568:2002(E)

C.5.10 Conjunction

C.5.10.1 Syntax

Predicate = ...
| Predicate , ∧ , Predicate
| ...
;

C.5.10.2 Type

Σ `P p Σ `P p

Σ `P p ∧ p
A conjunction predicate p ∧ p is well-typed if and only if predicates p and p are well-typed.

C.5.10.3 Semantics

The conjunction predicate p ∧ p is true if and only if p and p are true.

[[p ∧ p]]P = [[p]]P ∩ [[p]]P

In terms of the semantic universe, it is true in those models in which both p and p are true, and is false
otherwise.

C.5.11 Negation

C.5.11.1 Syntax

Predicate = ...
| ¬ , Predicate
| ...
;

C.5.11.2 Type

Σ `P p

Σ `P ¬ p
A negation predicate ¬ p is well-typed if and only if predicate p is well-typed.

C.5.11.3 Semantics

The negation predicate ¬ p is true if and only if p is false.

[[¬ p]]P = Model \ [[p]]P

In terms of the semantic universe, it is true in all models except those in which p is true.

C.5.12 Relation operator application

C.5.12.1 Syntax

Predicate = ...
| Relation
| ...
;

c©ISO/IEC 2002—All rights reserved 129

ISO/IEC 13568:2002(E) C Organisation by concrete syntax production

Relation = PrefixRel
| PostfixRel
| InfixRel
| NofixRel
;

PrefixRel = PREP , Expression
| LP , ExpSep , (Expression , EREP | ExpressionList , SREP) , Expression
;

PostfixRel = Expression , POSTP
| Expression , ELP , ExpSep , (Expression , ERP | ExpressionList , SRP)
;

InfixRel = Expression , (∈ | =-tok | IP) , Expression ,
{ (∈ | =-tok | IP) , Expression }

| Expression , ELP , ExpSep ,
(Expression , EREP | ExpressionList , SREP) , Expression

;

NofixRel = LP , ExpSep , (Expression , ERP | ExpressionList , SRP) ;

C.5.12.2 Transformation

All relation operator applications are transformed to annotated membership predicates.

Each relation NAME shall be one for which there is an operator template paragraph in scope (see 12.2.8).

The left-hand sides of many of these transformation rules involve ExpSep phrases: they use es metavariables.
None of them use ss metavariables: in other words, only the Expression ES case of ExpSep is specified, not
the ExpressionList SS case. Where the latter case occurs in a specification, the ExpressionList shall be
transformed by the rule in 12.2.12 to an expression, and thence a transformation analogous to that specified for
the former case can be performed, differing only in that a ss appears in the relation name in place of an es.

C.5.12.2.1 PrefixRel

prep e =⇒ e ∈ prep1
lp e es ... en− esn− en− erep en =⇒ (e, ..., en−, en−, en) ∈ lp1es...1esn−1erep1
lp e es ... en− esn− an− srep en =⇒ (e, ..., en−, an−, en) ∈ lp1es...1esn−1srep1

C.5.12.2.2 PostfixRel

e postp =⇒ e ∈ 1postp

e elp e es ... en− esn− en erp =⇒ (e, e, ..., en−, en) ∈ 1elp1es...1esn−1erp

e elp e es ... en− esn− an srp =⇒ (e, e, ..., en−, an) ∈ 1elp1es...1esn−1srp

130 c©ISO/IEC 2002—All rights reserved

C Organisation by concrete syntax production ISO/IEC 13568:2002(E)

C.5.12.2.3 InfixRel

e ip e ip e ... =⇒ e ip (e o
o α) ∧ (e o

o α) ip (e o
o α) ...

The chained relation e ip e ip e ... is semantically equivalent to a conjunction of relational predicates, with
the constraint that duplicated expressions be of the same type.

e = e =⇒ e ∈ {e}
e ip e =⇒ (e, e) ∈ 1ip1

ip in the above transformation is excluded from being ∈ or =, whereas ip, ip, ... in the chained relation can be
∈ or =.

e elp e es ... en− esn− en− erep en =⇒ (e, e, ..., en−, en−, en) ∈ 1elp1es...1esn−1erep1

e elp e es ... en− esn− an− srep en =⇒ (e, e, ..., en−, an−, en) ∈ 1elp1es...1esn−1srep1

C.5.12.2.4 NofixRel

lp e es ... en− esn− en erp =⇒ (e, ..., en−, en) ∈ lp1es...1esn−1erp
lp e es ... en− esn− an srp =⇒ (e, ..., en−, an) ∈ lp1es...1esn−1srp

C.5.12.3 Type

Σ `E e o
o τ Σ `E e o

o τ

Σ `P (e o
o τ) ∈ (e o

o τ)

(
τ = P τ

)
In a membership predicate e ∈ e, expression e shall be a set, and expression e shall be of the same type as
the members of set e.

C.5.12.4 Semantics

The membership predicate e ∈ e is true if and only if the value of e is in the set that is the value of e.

[[e ∈ e]]P = {M : Model | [[e]]EM ∈ [[e]]EM • M}

In terms of the semantic universe, it is true in those models in which the semantic value of e is in the semantic
value of e, and is false otherwise.

C.5.13 Schema

C.5.13.1 Syntax

Predicate = ...
| Expression
| ...
;

c©ISO/IEC 2002—All rights reserved 131

ISO/IEC 13568:2002(E) C Organisation by concrete syntax production

C.5.13.2 Transformation

The schema predicate e is true if and only if the binding of the names in the signature of schema e satisfies the
constraints of that schema.

e =⇒ θ e ∈ e

It is semantically equivalent to the binding constructed by θ e being a member of the set denoted by schema e.

C.5.14 Truth

C.5.14.1 Syntax

Predicate = ...
| true
| ...
;

C.5.14.2 Type

Σ `P true

A truth predicate is always well-typed.

C.5.14.3 Semantics

A truth predicate is always true.

[[true]]P = Model

In terms of the semantic universe, it is true in all models.

C.5.15 Falsity

C.5.15.1 Syntax

Predicate = ...
| false
| ...
;

C.5.15.2 Transformation

The falsity predicate false is never true.

false =⇒ ¬ true

It is semantically equivalent to the negation of true.

132 c©ISO/IEC 2002—All rights reserved

C Organisation by concrete syntax production ISO/IEC 13568:2002(E)

C.5.16 Parenthesized predicate

C.5.16.1 Syntax

Predicate = ...
| (-tok , Predicate ,)-tok
;

C.5.16.2 Transformation

The parenthesized predicate (p) is true if and only if p is true.

(p) =⇒ p

It is semantically equivalent to p.

C.6 Expression

C.6.1 Introduction

An Expression denotes a value in terms of the names with which values are associated by a model. An
Expression can be any of schema universal quantification, schema existential quantification, schema unique ex-
istential quantification, function construction, definite description, substitution expression, schema equivalence,
schema implication, schema disjunction, schema conjunction, schema negation, conditional, schema composition,
schema piping, schema hiding, schema projection, schema precondition, Cartesian product, powerset, function
and generic operator application, application, schema decoration, schema renaming, binding selection, tuple se-
lection, binding construction, reference, generic instantiation, number literal, set extension, set comprehension,
characteristic set comprehension, schema construction, binding extension, tuple extension, characteristic definite
description, or parenthesized expression.

C.6.2 Schema universal quantification

C.6.2.1 Syntax

Expression = ∀ , SchemaText , • , Expression
| ...
;

C.6.2.2 Type

Σ `E e o
o τ Σ ⊕ β `

E
e o

o τ

Σ `E ∀ (e o
o τ) • (e o

o τ) o
o τ

τ = P[β]
τ = P[β]
β ≈ β
τ = P[dom β −C β]

In a schema universal quantification expression ∀ e • e, expression e shall be a schema, and expression e, in
an environment overridden by the signature of schema e, shall also be a schema, and the signatures of these two
schemas shall be compatible. The type of the whole expression is that of a schema whose signature is computed
by subtracting from the signature of e those pairs whose names are in the signature of e.

C.6.2.3 Semantics

The value of the schema universal quantification expression ∀ e • e is the set of bindings of schema e restricted
to exclude names that are in the signature of e, for all bindings of the schema e.

[[∀ e • e o
o P τ]]E = λ M : Model • {t : [[τ]]TM | ∀ t : [[e]]EM • t ∪ t ∈ [[e]]E (M ⊕ t) • t}

c©ISO/IEC 2002—All rights reserved 133

ISO/IEC 13568:2002(E) C Organisation by concrete syntax production

In terms of the semantic universe, its semantic value, given a model M, is the set of the bindings (sets of pairs)
in the semantic values of the carrier set of the type of the entire schema universal quantification expression in
M, for which the union of the bindings (sets of pairs) in e and in the whole expression is in the set that is the
semantic value of e in the model M overridden with the binding in e.

C.6.3 Schema existential quantification

C.6.3.1 Syntax

Expression = ...
| ∃ , SchemaText , • , Expression
| ...
;

C.6.3.2 Transformation

The value of the schema existential quantification expression ∃ t • e is the set of bindings of schema e restricted
to exclude names that are in the signature of t, for at least one binding of the schema t.

∃ t • e =⇒ ¬ ∀ t • ¬ e

It is semantically equivalent to the result of applying de Morgan’s law.

C.6.4 Schema unique existential quantification

C.6.4.1 Syntax

Expression = ...
| ∃1 , SchemaText , • , Expression
| ...
;

C.6.4.2 Type

Σ `E e o
o τ Σ ⊕ β `

E
e o

o τ

Σ `E ∃1 (e o
o τ) • (e o

o τ) o
o τ

τ = P[β]
τ = P[β]
β ≈ β
τ = P[dom β −C β]

In a schema unique existential quantification expression ∃1 e • e, expression e shall be a schema, and expression
e, in an environment overridden by the signature of schema e, shall also be a schema, and the signatures of
these two schemas shall be compatible. The type of the whole expression is that of a schema whose signature is
computed by subtracting from the signature of e those pairs whose names are in the signature of e.

C.6.4.3 Semantics

The value of the schema unique existential quantification expression ∃1 e • e is the set of bindings of schema
e restricted to exclude names that are in the signature of e, for at least one binding of the schema e.

∃1 e • e =⇒ ¬ (∀ e • ¬ (e ∧ (∀ [e | e]./ • θ e = θ e
./)))

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

∃1 e • e =⇒ ∃ e • e ∧ (∀ [e | e]./ • θ e = θ e
./)

134 c©ISO/IEC 2002—All rights reserved

C Organisation by concrete syntax production ISO/IEC 13568:2002(E)

It is semantically equivalent to a schema existential quantification expression, analogous to the unique existential
quantification predicate transformation.

C.6.5 Function construction

C.6.5.1 Syntax

Expression = ...
| λ , SchemaText , • , Expression
| ...
;

C.6.5.2 Transformation

The value of the function construction expression λ t • e is the function associating values of the characteristic
tuple of t with corresponding values of e.

λ t • e =⇒ {t • (chartuple t, e)}

It is semantically equivalent to the set of pairs representation of that function.

C.6.6 Definite description

C.6.6.1 Syntax

Expression = ...
| µ , SchemaText , • , Expression
| ...
;

C.6.6.2 Type

Σ `E e o
o τ Σ ⊕ β `E e o

o τ

Σ `E µ (e o
o τ) • (e o

o τ) o
o τ

(
τ = P[β]
τ = τ

)
In a definite description expression µ e • e, expression e shall be a schema. The type of the whole expression
is the type of expression e, as determined in an environment overridden by the signature of schema e.

C.6.6.3 Semantics

The value of the definite description expression µ e • e is the sole value of e that arises whichever binding is
chosen from the set that is the value of schema e.

{M : Model ; t : W
| t ∈ [[e]]EM
∧ (∀ t : [[e]]EM • [[e]]E (M ⊕ t) = [[e]]E (M ⊕ t))

• M 7→ [[e]]E (M ⊕ t)} ⊆ [[µ e • e]]E

In terms of the semantic universe, its semantic value, given a model M in which the value of e in that model
overridden by a binding of the schema e is the same regardless of which binding is chosen, is that value of e.
In other models, it has a semantic value, but this loose definition of the semantics does not say what it is.

c©ISO/IEC 2002—All rights reserved 135

ISO/IEC 13568:2002(E) C Organisation by concrete syntax production

C.6.7 Substitution expression

C.6.7.1 Syntax

Expression = ...
| let , DeclName , == , Expression ,

{ ; -tok , DeclName , == , Expression } ,
• , Expression

| ...
;

C.6.7.2 Transformation

The value of the substitution expression let i == e; ...; in == en • e is the value of e when all of its references
to the names have been substituted by the values of the corresponding expressions.

let i == e; ...; in == en • e =⇒ µ i == e; ...; in == in • e

It is semantically equivalent to the similar definite description expression.

C.6.8 Schema equivalence

C.6.8.1 Syntax

Expression = ...
| Expression , ⇔ , Expression
| ...
;

C.6.8.2 Transformation

The value of the schema equivalence expression e ⇔ e is that schema whose signature is the union of those of
schemas e and e, and whose bindings are those whose relevant restrictions are either both or neither in e and
e.

e ⇔ e =⇒ (e ⇒ e) ∧ (e ⇒ e)

It is semantically equivalent to the schema conjunction of the schema implication e ⇒ e with the schema
implication e ⇒ e.

C.6.9 Schema implication

C.6.9.1 Syntax

Expression = ...
| Expression , ⇒ , Expression
| ...
;

C.6.9.2 Transformation

The value of the schema implication expression e ⇒ e is that schema whose signature is the union of those of
schemas e and e, and whose bindings are those whose restriction to the signature of e is in the value of e if
its restriction to the signature of e is in the value of e.

e ⇒ e =⇒ ¬ e ∨ e

136 c©ISO/IEC 2002—All rights reserved

C Organisation by concrete syntax production ISO/IEC 13568:2002(E)

It is semantically equivalent to the schema disjunction of the schema negation ¬ e with e.

C.6.10 Schema disjunction

C.6.10.1 Syntax

Expression = ...
| Expression , ∨ , Expression
| ...
;

C.6.10.2 Transformation

The value of the schema disjunction expression e ∨ e is that schema whose signature is the union of those of
schemas e and e, and whose bindings are those whose restriction to the signature of e is in the value of e or
its restriction to the signature of e is in the value of e.

e ∨ e =⇒ ¬ (¬ e ∧ ¬ e)

It is semantically equivalent to the schema negation of the schema conjunction of the schema negations of e and
e.

C.6.11 Schema conjunction

C.6.11.1 Syntax

Expression = ...
| Expression , ∧ , Expression
| ...
;

C.6.11.2 Type

Σ `E e o
o τ Σ `E e o

o τ

Σ `E (e o
o τ) ∧ (e o

o τ) o
o τ

τ = P[β]
τ = P[β]
β ≈ β
τ = P[β ∪ β]

In a schema conjunction expression e ∧ e, expressions e and e shall be schemas, and their signatures shall
be compatible. The type of the whole expression is that of the schema whose signature is the union of those of
expressions e and e.

C.6.11.3 Semantics

The value of the schema conjunction expression e ∧ e is the schema resulting from merging the signatures of
schemas e and e and conjoining their constraints.

[[e ∧ e o
o P τ]]E = λ M : Model • {t : [[τ]]TM; t : [[e]]EM; t : [[e]]EM | t ∪ t = t • t}

In terms of the semantic universe, its semantic value, given a model M, is the set of the unions of the bindings
(sets of pairs) in the semantic values of e and e in M.

c©ISO/IEC 2002—All rights reserved 137

ISO/IEC 13568:2002(E) C Organisation by concrete syntax production

C.6.12 Schema negation

C.6.12.1 Syntax

Expression = ...
| ¬ , Expression
| ...
;

C.6.12.2 Type

Σ `E e o
o τ

Σ `E ¬ (e o
o τ) o

o τ

(
τ = P[β]
τ = τ

)
In a schema negation expression ¬ e, expression e shall be a schema. The type of the whole expression is the
same as the type of expression e.

C.6.12.3 Semantics

The value of the schema negation expression ¬ e is that set of bindings that are of the same type as those in
schema e but that are not in schema e.

[[¬ e o
o P τ]]E = λ M : Model • {t : [[τ]]TM | ¬ t ∈ [[e]]EM • t}

In terms of the semantic universe, its semantic value, given a model M, is the set of the bindings (sets of pairs)
that are members of the semantic value of the carrier set of schema e in M such that those bindings are not
members of the semantic value of schema e in M.

C.6.13 Conditional

C.6.13.1 Syntax

Expression = ...
| if , Predicate , then , Expression , else , Expression
| ...
;

C.6.13.2 Transformation

The value of the conditional expression if p then e else e is the value of e if p is true, and is the value of e if
p is false.

if p then e else e =⇒ µ i : {e, e} | p ∧ i = e ∨ ¬ p ∧ i = e • i

It is semantically equivalent to the definite description expression whose value is either that of e or that of e
such that if p is true then it is e or if p is false then it is e.

C.6.14 Schema composition

C.6.14.1 Syntax

Expression = ...
| Expression , o

9 , Expression
| ...
;

138 c©ISO/IEC 2002—All rights reserved

C Organisation by concrete syntax production ISO/IEC 13568:2002(E)

C.6.14.2 Type

Σ `E e o
o τ Σ `E e o

o τ

Σ `E (e o
o τ) o

9 (e o
o τ) o

o τ

τ = P[β]
τ = P[β]
match = {i : dom β | i decor ′ ∈ dom β • i}
β = {i : match • i decor ′} −C β
β = match −C β
β ≈ β
{i : match • i 7→ β(i decor ′)} ≈ {i : match • i 7→ β i}
τ = P[β ∪ β]

In a schema composition expression e o

9 e, expressions e and e shall be schemas. Let match be the set of
names in schema e for which there are matching primed names in schema e. Let β be the signature formed
from the components of e excluding the matched primed components. Let β be the signature formed from the
components of e excluding the matched unprimed components. Signatures β and β shall be compatible. The
types of the excluded matched pairs of components shall be the same. The type of the whole expression is that
of a schema whose signature is the union of β and β.

C.6.14.3 Semantics

The value of the schema composition expression e o
9 e is that schema representing the operation of doing the

operations represented by schemas e and e in sequence.

(e o
o P[σ]) o

9 (e o
o P[σ]) o

o P[σ]
=⇒

¬ (∀ e./ • ¬ (¬ (∀ e • ¬ [e; e./ | θ e = θ e./])
∧ ¬ (∀ e • ¬ [e; e./ | θ e = θ e./])))

where e == carrier [{i : NAME; τ : Type | i decor ′ 7→ τ ∈ σ • i decor ′ 7→ τ}]
and e == carrier [{i : NAME; τ : Type | i 7→ τ ∈ σ • i 7→ τ}]
and e./ == (e)./

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

(e o
o P[σ]) o

9 (e o
o P[σ]) o

o P[σ]
=⇒

∃ e./ • (∃ e • [e; e
./ | θ e = θ e./])

∧ (∃ e • [e; e
./ | θ e = θ e./])

where e == carrier [{i : NAME; τ : Type | i decor ′ 7→ τ ∈ σ • i decor ′ 7→ τ}]
and e == carrier [{i : NAME; τ : Type | i 7→ τ ∈ σ • i 7→ τ}]
and e./ == (e)

./

It is semantically equivalent to the existential quantification of the matched pairs of primed components of e
and unprimed components of e, with those matched pairs being equated.

C.6.15 Schema piping

C.6.15.1 Syntax

Expression = ...
| Expression , >> , Expression
| ...
;

c©ISO/IEC 2002—All rights reserved 139

ISO/IEC 13568:2002(E) C Organisation by concrete syntax production

C.6.15.2 Type

Σ `E e o
o τ Σ `E e o

o τ

Σ `E (e o
o τ)>> (e o

o τ) o
o τ

τ = P[β]
τ = P[β]
match = {i : NAME | i decor ! ∈ dom β ∧ i decor ? ∈ dom β • i}
β = {i : match • i decor !} −C β
β = {i : match • i decor ?} −C β
β ≈ β
{i : match • i 7→ β(i decor !)} ≈ {i : match • i 7→ β (i decor ?)}
τ = P[β ∪ β]

In a schema piping expression e>>e, expressions e and e shall be schemas. Let match be the set of names for
which there are matching shrieked names in schema e and queried names in schema e. Let β be the signature
formed from the components of e excluding the matched shrieked components. Let β be the signature formed
from the components of e excluding the matched queried components. Signatures β and β shall be compatible.
The types of the excluded matched pairs of components shall be the same. The type of the whole expression is
that of a schema whose signature is the union of β and β.

C.6.15.3 Semantics

The value of the schema piping expression e >> e is that schema representing the operation formed from the
two operations represented by schemas e and e with the outputs of e identified with the inputs of e.

(e o
o P[σ])>> (e o

o P[σ]) o
o P[σ]

=⇒
¬ (∀ e./ • ¬ (¬ (∀ e • ¬ [e; e./ | θ e = θ e./])

∧ ¬ (∀ e • ¬ [e; e./ | θ e = θ e./])))
where e == carrier [{i : NAME; τ : Type | i decor ! 7→ τ ∈ σ • i decor ! 7→ τ}]

and e == carrier [{i : NAME; τ : Type | i decor ? 7→ τ ∈ σ • i decor ? 7→ τ}]
and e./ == (e)./

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

(e o
o P[σ])>> (e o

o P[σ]) o
o P[σ]

=⇒
∃ e./ • (∃ e • [e; e

./ | θ e = θ e./])
∧ (∃ e • [e; e

./ | θ e = θ e./])

where e == carrier [{i : NAME; τ : Type | i decor ! 7→ τ ∈ σ • i decor ! 7→ τ}]
and e == carrier [{i : NAME; τ : Type | i decor ? 7→ τ ∈ σ • i decor ? 7→ τ}]
and e./ == (e)

./

It is semantically equivalent to the existential quantification of the matched pairs of shrieked components of e
and queried components of e, with those matched pairs being equated.

C.6.16 Schema hiding

C.6.16.1 Syntax

Expression = ...
| Expression , \ , (-tok , DeclName , { ,-tok , DeclName } ,)-tok
| ...
;

140 c©ISO/IEC 2002—All rights reserved

C Organisation by concrete syntax production ISO/IEC 13568:2002(E)

C.6.16.2 Type

Σ `E e o
o τ

Σ `E (e o
o τ) \ (i, ..., in) o

o τ

 τ = P[β]
{i, ..., in} ⊆ dom β
τ = P[{i, ..., in} −C β]

In a schema hiding expression e \ (i, ..., in), expression e shall be a schema, and the names to be hidden shall
all be in the signature of that schema. The type of the whole expression is that of a schema whose signature is
computed by subtracting from the signature of expression e those pairs whose names are hidden.

C.6.16.3 Semantics

The value of the schema hiding expression e \ (i, ..., in) is that schema whose signature is that of schema e
minus the hidden names, and whose bindings have the same values as those in schema e.

(e o
o P[σ]) \ (i, ..., in) =⇒ ¬ (∀ i : carrier (σ i); ...; in : carrier (σ in) • ¬ e)

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

(e o
o P[σ]) \ (i, ..., in) =⇒ ∃ i : carrier (σ i); ...; in : carrier (σ in) • e

It is semantically equivalent to the schema existential quantification of the hidden names i, ..., in from the schema
e.

C.6.17 Schema projection

C.6.17.1 Syntax

Expression = ...
| Expression , � , Expression
| ...
;

C.6.17.2 Transformation

The value of the schema projection expression e � e is the schema that is like the conjunction e ∧ e but whose
signature is restricted to just that of schema e.

e � e =⇒ {e; e • θ e}

It is semantically equivalent to that set of bindings of names in the signature of e to values that satisfy the
constraints of both e and e.

C.6.18 Schema precondition

C.6.18.1 Syntax

Expression = ...
| pre , Expression
| ...
;

c©ISO/IEC 2002—All rights reserved 141

ISO/IEC 13568:2002(E) C Organisation by concrete syntax production

C.6.18.2 Type

Σ `E e o
o τ

Σ `E pre (e o
o τ) o

o τ

(
τ = P[β]
τ = P[{i, j : NAME | j ∈ dom β ∧ (j = i decor ′ ∨ j = i decor !) • j} −C β]

)
In a schema precondition expression pre e, expression e shall be a schema. The type of the whole expression is
that of a schema whose signature is computed by subtracting from the signature of e those pairs whose names
have primed or shrieked decorations.

C.6.18.3 Semantics

The value of the schema precondition expression pre e is that schema which is like schema e but without its
primed and shrieked components.

pre(e o
o P[σ]) o

o P[σ] =⇒ ¬ (∀ carrier [σ \ σ] • ¬ e)

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

pre(e o
o P[σ]) o

o P[σ] =⇒ ∃ carrier [σ \ σ] • e

It is semantically equivalent to the existential quantification of the primed and shrieked components from the
schema e.

C.6.19 Cartesian product

C.6.19.1 Syntax

Expression = ...
| Expression , × , Expression , { × , Expression }
| ...
;

C.6.19.2 Transformation

The value of the Cartesian product expression e× ...× en is the set of all tuples whose components are members
of the corresponding sets that are the values of its expressions.

e × ...× en =⇒ {i : e; ...; in : en • (i, ..., in)}

It is semantically equivalent to the set comprehension expression that declares members of the sets and assembles
those members into tuples.

C.6.20 Powerset

C.6.20.1 Syntax

Expression = ...
| P , Expression
| ...
;

142 c©ISO/IEC 2002—All rights reserved

C Organisation by concrete syntax production ISO/IEC 13568:2002(E)

C.6.20.2 Type

Σ `E e o
o τ

Σ `E P(e o
o τ) o

o τ

(
τ = Pα
τ = P τ

)
In a powerset expression P e, expression e shall be a set. The type of the whole expression is then a powerset of
the type of expression e.

C.6.20.3 Semantics

The value of the powerset expression P e is the set of all subsets of the set that is the value of e.

[[P e]]E = λ M : Model • P ([[e]]EM)

In terms of the semantic universe, its semantic value, given a model M, is the powerset of values of e in M.

C.6.21 Function and generic operator application

C.6.21.1 Syntax

Expression = ...
| Application
| ...
;

Application = PrefixApp
| PostfixApp
| InfixApp
| NofixApp
;

PrefixApp = PRE , Expression
| L , ExpSep , (Expression , ERE | ExpressionList , SRE) , Expression
;

PostfixApp = Expression , POST
| Expression , EL , ExpSep , (Expression , ER | ExpressionList , SR)
;

InfixApp = Expression , I , Expression
| Expression , EL , ExpSep ,

(Expression , ERE | ExpressionList , SRE) , Expression
;

NofixApp = L , ExpSep , (Expression , ER | ExpressionList , SR) ;

C.6.21.2 Transformation

All function operator applications are transformed to annotated application expressions.

All generic operator applications are transformed to annotated generic instantiation expressions.

For any particular function or generic operator application, two potential transformations are specified below,
both of which result in the same NAME. That NAME shall be one for which there is an operator template paragraph
in scope (see 12.2.8). Which of the two transformations is appropriate is determined by that operator template’s
category: function or generic respectively.

c©ISO/IEC 2002—All rights reserved 143

ISO/IEC 13568:2002(E) C Organisation by concrete syntax production

The left-hand sides of many of these transformation rules involve ExpSep phrases: they use es metavariables.
None of them use ss metavariables: in other words, only the Expression ES case of ExpSep is specified, not
the ExpressionList SS case. Where the latter case occurs in a specification, the ExpressionList shall be
transformed by the rule in 12.2.12 to an expression, and thence a transformation analogous to that specified for
the former case can be performed, differing only in that a ss appears in the function or generic name in place of
an es.

C.6.21.2.1 PrefixApp

Function cases

pre e =⇒ pre1 e

ln e es ... en− esn− en− ere en =⇒ ln1es...1esn−1ere1 (e, ..., en−, en−, en)
ln e es ... en− esn− an− sre en =⇒ ln1es...1esn−1sre1 (e, ..., en−, an−, en)

Generic cases

pre e =⇒ pre1 [e]
ln e es ... en− esn− en− ere en =⇒ ln1es...1esn−1ere1 [e, ..., en−, en−, en]
ln e es ... en− esn− an− sre en =⇒ ln1es...1esn−1sre1 [e, ..., en−, an−, en]

C.6.21.2.2 PostfixApp

Function cases

e post =⇒ 1post e

e el e es ... en− esn− en er =⇒ 1el1es...1esn−1er (e, e, ..., en−, en)
e el e es ... en− esn− an sr =⇒ 1el1es...1esn−1sr (e, e, ..., en−, an)

Generic cases

e post =⇒ 1post [e]
e el e es ... en− esn− en er =⇒ 1el1es...1esn−1er [e, e, ..., en−, en]
e el e es ... en− esn− an sr =⇒ 1el1es...1esn−1sr [e, e, ..., en−, an]

C.6.21.2.3 InfixApp

Function cases

e in e =⇒ 1in1 (e, e)
e el e es ... en− esn− en− ere en =⇒ 1el1es...1esn−1ere1 (e, e, ..., en−, en−, en)
e el e es ... en− esn− an− sre en =⇒ 1el1es...1esn−1sre1 (e, e, ..., en−, an−, en)

Generic cases

e in e =⇒ 1in1 [e, e]
e el e es ... en− esn− en− ere en =⇒ 1el1es...1esn−1ere1 [e, e, ..., en−, en−, en]
e el e es ... en− esn− an− sre en =⇒ 1el1es...1esn−1sre1 [e, e, ..., en−, an−, en]

144 c©ISO/IEC 2002—All rights reserved

C Organisation by concrete syntax production ISO/IEC 13568:2002(E)

C.6.21.2.4 NofixApp

Function cases

ln e es ... en− esn− en er =⇒ ln1es...1esn−1er (e, ..., en−, en)
ln e es ... en− esn− an sr =⇒ ln1es...1esn−1sr (e, ..., en−, an)

Generic cases

ln e es ... en− esn− en er =⇒ ln1es...1esn−1er [e, ..., en−, en]
ln e es ... en− esn− an sr =⇒ ln1es...1esn−1sr [e, ..., en−, an]

C.6.21.3 Type

Σ `E e o
o τ

Σ `E P(e o
o τ) o

o τ

(
τ = Pα
τ = P τ

)
In a powerset expression P e, expression e shall be a set. The type of the whole expression is then a powerset of
the type of expression e.

C.6.21.4 Semantics

The value of the powerset expression P e is the set of all subsets of the set that is the value of e.

[[P e]]E = λ M : Model • P ([[e]]EM)

In terms of the semantic universe, its semantic value, given a model M, is the powerset of values of e in M.

C.6.22 Application

C.6.22.1 Syntax

Expression = ...
| Expression , Expression
| ...
;

C.6.22.2 Type

Σ `E e o
o τ Σ `E e o

o τ

Σ `E (e o
o τ) (e o

o τ) o
o τ

(
τ = P(τ × τ)

)
In an application expression e e, the expression e shall be a set of pairs, and expression e shall be of the
same type as the first components of those pairs. The type of the whole expression is the type of the second
components of those pairs.

C.6.22.3 Semantics

The value of the application expression e e is the sole value associated with e in the relation e.

e e o
o τ =⇒ (µ i : carrier τ | (e, i) ∈ e • i)

It is semantically equivalent to that sole range value i such that the pair (e, i) is in the set of pairs that is the
value of e. If there is no value or more than one value associated with e, then the application expression has a
value but what it is is not specified.

c©ISO/IEC 2002—All rights reserved 145

ISO/IEC 13568:2002(E) C Organisation by concrete syntax production

C.6.23 Schema decoration

C.6.23.1 Syntax

Expression = ...
| Expression , STROKE
| ...
;

C.6.23.2 Type

Σ `E e o
o τ

Σ `E (e o
o τ) + o

o τ

(
τ = P[β]
τ = P[{i : dom β • i decor + 7→ β i}]

)
In a schema decoration expression e +, expression e shall be a schema. The type of the whole expression is that
of a schema whose signature is like that of e but with the stroke appended to each of its names.

C.6.23.3 Semantics

The value of the schema decoration expression e + is that schema whose bindings are like those of the schema e
except that their names have the addition stroke +.

(e o
o P[i : τ; ...; in : τn])+ =⇒ e [i decor + / i, ..., in decor + / in]

It is semantically equivalent to the schema renaming where decorated names rename the original names.

C.6.24 Schema renaming

C.6.24.1 Syntax

Expression = ...
| Expression , [-tok , DeclName , / , DeclName ,

{ ,-tok , DeclName , / , DeclName } ,]-tok
| ...
;

C.6.24.2 Type

Σ `E e o
o τ

Σ `E (e o
o τ)[j / i, ..., jn / in] o

o τ

{i, ..., in} = n
τ = P[β]
β = {j 7→ i, ..., jn 7→ in} o

9 β ∪ {i, ..., in} −C β
τ = P[β]
β ∈ (7→)

In a schema renaming expression e [j / i, ..., jn / in], there shall be no duplicates amongst the old names
i, ..., in. Expression e shall be a schema. The type of the whole expression is that of a schema whose signature
is like that of expression e but with the new names in place of corresponding old names. Declarations that are
merged by the renaming shall have the same type.

NOTE Old names need not be in the signature of the schema. This is so as to permit renaming to distribute over
other notations such as disjunction.

146 c©ISO/IEC 2002—All rights reserved

C Organisation by concrete syntax production ISO/IEC 13568:2002(E)

C.6.24.3 Semantics

The value of the schema renaming expression e [j / i, ..., jn / in] is that schema whose bindings are like those
of schema e except that some of its names have been replaced by new names, possibly merging components.

[[e [j / i, ..., jn / in]]]E = λ M : Model •
{t : [[e]]EM; t : W |

t = {j 7→ i, ..., jn 7→ in} o
9 t ∪ {i, ..., in} −C t

∧ t ∈ (7→)
• t}

In terms of the semantic universe, its semantic value, given a model M, is the set of the bindings (sets of pairs)
in the semantic value of e in M with the new names replacing corresponding old names. Where components are
merged by the renaming, those components shall have the same value.

C.6.25 Binding selection

C.6.25.1 Syntax

Expression = ...
| Expression , . , RefName
| ...
;

C.6.25.2 Type

Σ `E e o
o τ

Σ `E (e o
o τ) . i o

o τ

(
τ = [β]
(i, τ) ∈ β

)
In a binding selection expression e . i, expression e shall be a binding, and name i shall select one of its
components. The type of the whole expression is the type of the selected component.

C.6.25.3 Semantics

The value of the binding selection expression e . i is that value associated with i in the binding that is the value
of e.

(e o
o [σ]) . i =⇒ {carrier [σ] • (chartuple (carrier [σ]), i)} e

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

(e o
o [σ]) . i =⇒ (λ carrier [σ] • i) e

It is semantically equivalent to the function construction expression, from bindings of the schema type of e, to
the value of the selected name i, applied to the particular binding e.

c©ISO/IEC 2002—All rights reserved 147

ISO/IEC 13568:2002(E) C Organisation by concrete syntax production

C.6.26 Tuple selection

C.6.26.1 Syntax

Expression = ...
| Expression , . , NUMERAL
| ...
;

C.6.26.2 Type

Σ `E e o
o τ

Σ `E (e o
o τ) . b o

o τ

 τ = α × ...× αk
b ∈ 1 . . k
τ = αb

In a tuple selection expression e . b, the type of expression e shall be a Cartesian product, and the numeric value
of NUMERAL b shall select one of its components. The type of the whole expression is the type of the selected
component.

C.6.26.3 Semantics

The value of the tuple selection expression e . b is the b’th component of the tuple that is the value of e.

(e o
o τ × ...× τn) . b =⇒ {i : carrier (τ × ...× τn) •

(i, µ i : carrier τ; ...; in : carrier τn | i = (i, ..., in) • ib)} e

NOTE Exploiting notation that is not present in the annotated syntax, this abbreviates to the following.

(e o
o τ × ...× τn) . b =⇒ (λ i : carrier (τ × ...× τn) •

µ i : carrier τ; ...; in : carrier τn | i = (i, ..., in) • ib) e

It is semantically equivalent to the function construction, from tuples of the Cartesian product type to the selected
component of the tuple b, applied to the particular tuple e.

C.6.27 Binding construction

C.6.27.1 Syntax

Expression = ...
| θ , Expression , { STROKE }
| ...
;

C.6.27.2 Type

Σ `E e o
o τ

Σ `E θ (e o
o τ) ∗ o

o τ

 τ = P[β]
∀ i : dom β • (i decor ∗, β i) ∈ Σ ∧ ¬ generic type (β i)
τ = [β]

In a binding construction expression θ e ∗, the expression e shall be a schema. Every name and type pair in its
signature, with the optional decoration added, shall be present in the environment with a non-generic type. The
type of the whole expression is that of a binding whose signature is that of the schema.

NOTE If the type in the environment were generic, the semantic transformation in 14.2.5.2 would produce a reference
expression whose implicit instantiation is not determined by this International Standard.

148 c©ISO/IEC 2002—All rights reserved

C Organisation by concrete syntax production ISO/IEC 13568:2002(E)

C.6.27.3 Semantics

The value of the binding construction expression θ e ∗ is the binding whose names are those in the signature of
schema e and whose values are those of the same names with the optional decoration appended.

θ e ∗ o
o [i : τ; ...; in : τn] =⇒ 〈| i == i decor ∗, ..., in == in decor ∗ |〉

It is semantically equivalent to the binding extension expression whose value is that binding.

C.6.28 Reference

C.6.28.1 Syntax

Expression = ...
| RefName
| ...
;

C.6.28.2 Type

In a reference expression, if the name is of the form ∆i and no declaration of this name yet appears in the
environment, then the following syntactic transformation is applied.

∆i
∆i 6∈dom Σ

=⇒ [i; i ′]

This syntactic transformation makes the otherwise undefined name be equivalent to the corresponding schema
construction expression, which is then typechecked.

Similarly, if the name is of the form Ξi and no declaration of this name yet appears in the environment, then the
following syntactic transformation is applied.

Ξi
Ξi 6∈dom Σ

=⇒ [i; i ′ | θ i = θ i ′]

NOTE 1 The Ξ notation is deliberately not defined in terms of the ∆ notation.

NOTE 2 Type inference could be done without these syntactic transformations, but they are necessary steps in
defining the formal semantics.

NOTE 3 Only occurrences of ∆ and Ξ that are in such reference expressions are so transformed, not others such as
those in the names of declarations.

Σ `E i o
o τ

(
i ∈ dom Σ
τ = if generic type (Σ i) then Σ i, (Σ i) [α, ..., αn] else Σ i

)
In any other reference expression i, the name i shall be associated with a type in the environment. If that type
is generic, the annotation of the whole expression is a pair of both the uninstantiated type (for the Instantiation
clause to determine that this is a reference to a generic definition) and the type instantiated with new distinct
type variables (which the context shall constrain to non-generic types). Otherwise (if the type in the environment
is non-generic), that is the type of the whole expression.

NOTE 4 If the type is generic, the reference expression will be transformed to a generic instantiation expression by
the rule in 13.2.3.3. That shall be done only when the implicit instantiations have been determined via constraints
on the new type variables α, ..., αn.

c©ISO/IEC 2002—All rights reserved 149

ISO/IEC 13568:2002(E) C Organisation by concrete syntax production

C.6.28.3 Semantics

The value of a reference expression that refers to a generic definition is an inferred instantiation of that generic
definition.

i o
o [i, ..., in]τ, τ ′

τ ′=([i, ..., in]τ) [α, ..., αn]
=⇒ i [carrier α, ..., carrier αn] o

o τ ′

It is semantically equivalent to the generic instantiation expression whose generic actuals are the carrier sets of
the types inferred for the generic parameters. The type τ ′ is an instantiation of the generic type τ. The types
inferred for the generic parameters are α, ..., αn. They shall all be determinable by comparison of τ with τ ′ as
suggested by the condition on the transformation. Cases where these types cannot be so determined, because the
generic type is independent of some of the generic parameters, are not well-typed.

EXAMPLE 1 The paragraph

a[X] == 1

defines a with type [X]GIVEN A. The paragraph

b == a

typechecks, giving the annotated expression a o
o [X]GIVEN A, GIVEN A. Comparison of the generic type with the

instantiated type does not determine a type for the generic parameter X , and so this specification is not well-typed.

Cases where these types are not unique (contain unconstrained variables) are not well-typed.

EXAMPLE 2 The paragraph

empty == ∅

will contain the annotated expression ∅ o
o [X]PX ,Pα, in which the type determined for the generic parameter X is

unconstrained, and so this specification is not well-typed.

The value of the reference expression that refers to a non-generic definition i is the value of the declaration to
which it refers.

[[i]]E = λ M : Model • M i

In terms of the semantic universe, its semantic value, given a model M, is that associated with the name i in M.

C.6.29 Generic instantiation

C.6.29.1 Syntax

Expression = ...
| RefName , [-tok , Expression , { ,-tok , Expression } ,]-tok
| ...
;

C.6.29.2 Type

Σ `E e o
o τ ... Σ `E en o

o τn

Σ `E i[(e o
o τ), ..., (en o

o τn)] o
o τ

i ∈ dom Σ
generic type (Σ i)
τ = Pα

...
τn = Pαn
τ = (Σ i) [α, ..., αn]

150 c©ISO/IEC 2002—All rights reserved

C Organisation by concrete syntax production ISO/IEC 13568:2002(E)

In a generic instantiation expression i [e, ..., en], the name i shall be associated with a generic type in the
environment, and the expressions e, ..., en shall be sets. That generic type shall have the same number of
parameters as there are sets. The type of the whole expression is the instantiation of that generic type by the
types of those sets’ components.

NOTE The operation of generic type instantiation is defined in 13.2.3.1.

C.6.29.3 Semantics

The value of the generic instantiation expression i [e, ..., en] is a particular instance of the generic referred to by
name i.

[[i [e, ..., en]]]E = λ M : Model • M i ([[e]]EM, ..., [[en]]EM)

In terms of the semantic universe, its semantic value, given a model M, is the generic value associated with the
name i in M instantiated with the semantic values of the instantiation expressions in M.

C.6.30 Number literal

C.6.30.1 Introduction

Z accepts the ordinary notation for writing number literals that represent natural numbers, and imposes the usual
meaning on those literals. The method of doing this is as follows.

The lexis defines the notion of a numeric string. The prelude defines the notions of natural number, zero, one
and addition (of natural numbers). The syntactic transformation rules prescribe how numeric strings are to be
understood as natural numbers, using the ideas defined in the prelude.

The extension to integers, and the introduction of other numeric operations on integers, is defined in the mathe-
matical toolkit (annex B).

The extension to other number systems is left to user definition.

C.6.30.2 Syntax

Expression = ...
| NUMERAL
| ...
;

Numeric literals are concrete expressions.

c©ISO/IEC 2002—All rights reserved 151

ISO/IEC 13568:2002(E) C Organisation by concrete syntax production

C.6.30.3 Transformation

The value of the multiple-digit number literal expression bc is the number that it denotes.

bc =⇒ b + b + b + b + b +
b + b + b + b + b + c

It is semantically equivalent to the sum of ten repetitions of the number literal expression b formed from all but
the last digit, added to that last digit.

0 =⇒ number literal 0
1 =⇒ number literal 1
2 =⇒ 1 + 1
3 =⇒ 2 + 1
4 =⇒ 3 + 1
5 =⇒ 4 + 1
6 =⇒ 5 + 1
7 =⇒ 6 + 1
8 =⇒ 7 + 1
9 =⇒ 8 + 1

The number literal expressions 0 and 1 are semantically equivalent to number literal 0 and number literal 1 re-
spectively as defined in section prelude. The remaining digits are defined as being successors of their predecessors,
using the function + as defined in section prelude.

NOTE These syntactic transformations are applied only to NUMERAL tokens that form number literal expressions,
not to other NUMERAL tokens (those in tuple selection expressions and operator template paragraphs), as those other
occurrences of NUMERAL do not have semantic values associated with them.

C.6.31 Set extension

C.6.31.1 Syntax

Expression = ...
| {-tok , [Expression , { ,-tok , Expression }] , }-tok
| ...
;

C.6.31.2 Type

Σ `E e o
o τ ... Σ `E en o

o τn

Σ `E {(e o
o τ), ..., (en o

o τn)} o
o τ

if n > 0 then
(τ = τn

...
τn− = τn
τ = P τ)

else τ = Pα

In a set extension expression, every component expression shall be of the same type. The type of the whole
expression is a powerset of the components’ type, or a powerset of a type variable if there are no components. In
the latter case, the variable shall be constrained by the context, otherwise the specification is not well-typed.

152 c©ISO/IEC 2002—All rights reserved

C Organisation by concrete syntax production ISO/IEC 13568:2002(E)

C.6.31.3 Semantics

The value of the set extension expression { e, ..., en} is the set containing the values of its expressions.

[[{ e, ..., en}]]E = λ M : Model • {[[e]]EM, ..., [[en]]EM}

In terms of the semantic universe, its semantic value, given a model M, is the set whose members are the semantic
values of the member expressions in M.

C.6.32 Set comprehension

C.6.32.1 Syntax

Expression = ...
| {-tok , SchemaText , • , Expression , }-tok
| ...
;

C.6.32.2 Type

Σ `E e o
o τ Σ ⊕ β `E e o

o τ

Σ `E {(e o
o τ) • (e o

o τ)} o
o τ

(
τ = P[β]
τ = P τ

)
In a set comprehension expression {e • e}, expression e shall be a schema. The type of the whole expression is
a powerset of the type of expression e, as determined in an environment overridden by the signature of schema
e.

C.6.32.3 Semantics

The value of the set comprehension expression { e • e} is the set of values of e for all bindings of the schema
e.

[[{ e • e}]]E = λ M : Model • {t : [[e]]EM • [[e]]E (M ⊕ t)}

In terms of the semantic universe, its semantic value, given a model M, is the set of values of e in M overridden
with a binding value of e in M.

C.6.33 Characteristic set comprehension

C.6.33.1 Syntax

Expression = ...
| (({-tok , SchemaText , }-tok) — ({-tok , }-tok))

— ({-tok , Expression , }-tok)
| ...
;

C.6.33.2 Transformation

The value of the characteristic set comprehension expression {t} is the set of the values of the characteristic tuple
of t.

{t} =⇒ {t • chartuple t}

c©ISO/IEC 2002—All rights reserved 153

ISO/IEC 13568:2002(E) C Organisation by concrete syntax production

It is semantically equivalent to the corresponding set comprehension expression in which the characteristic tuple
is made explicit.

C.6.34 Schema construction

C.6.34.1 Syntax

Expression = ...
| ([-tok , SchemaText ,]-tok) — ([-tok , Expression ,]-tok)
| ...
;

C.6.34.2 Transformation

The value of the schema construction expression [t] is that schema whose signature is the names declared by the
schema text t, and whose bindings are those that satisfy the constraints in t.

[t] =⇒ t

It is semantically equivalent to the schema resulting from syntactic transformation of the schema text t.

C.6.34.3 Type

Σ `E e o
o τ

Σ `E [i : (e o
o τ)] o

o τ

(
τ = Pα
τ = P[i : α]

)
In a variable construction expression [i : e], expression e shall be a set. The type of the whole expression is that
of a schema whose signature associates the name i with the type of a member of the set e.

Σ `E e o
o τ Σ ⊕ β `P p

Σ `E [(e o
o τ) | p] o

o τ

(
τ = P[β]
τ = τ

)
In a schema construction expression [e | p], expression e shall be a schema, and predicate p shall be well-typed
in an environment overridden by the signature of schema e. The type of the whole expression is the same as the
type of expression e.

C.6.34.4 Semantics

The value of the variable construction expression [i : e] is the set of all bindings whose sole name is i and whose
associated value is in the set that is the value of e.

[[[i : e]]]E = λ M : Model • {w : [[e]]EM • {i 7→ w}}

In terms of the semantic universe, its semantic value, given a model M, is the set of all singleton bindings (sets
of pairs) of the name i associated with a value from the set that is the semantic value of e in M.

The value of the schema construction expression [e | p] is the set of all bindings of schema e that satisfy the
constraints of predicate p.

[[[e | p]]]E = λ M : Model • {t : [[e]]EM | M ⊕ t ∈ [[p]]P • t}

In terms of the semantic universe, its semantic value, given a model M, is the set of the bindings (sets of pairs)
that are members of the semantic value of schema e in M such that p is true in the model M overridden with
that binding.

154 c©ISO/IEC 2002—All rights reserved

C Organisation by concrete syntax production ISO/IEC 13568:2002(E)

C.6.35 Binding extension

C.6.35.1 Syntax

Expression = ...
| 〈| , [DeclName , == , Expression ,

{ ,-tok , DeclName , == , Expression }] , |〉
| ...
;

C.6.35.2 Type

Σ `E e o
o τ ... Σ `E en o

o τn

Σ `E 〈| i == (e o
o τ), ..., in == (en o

o τn) |〉 o
o τ

(
{i, ..., in} = n
τ = [i : τ; ...; in : τn]

)
In a binding extension expression 〈| i == e, ..., in == en |〉, there shall be no duplication amongst the bound
names. The type of the whole expression is that of a binding whose signature associates the names with the types
of the corresponding expressions.

C.6.35.3 Semantics

The value of the binding extension expression 〈| i == e, ..., in == en |〉 is the binding whose names are as
enumerated and whose values are those of the associated expressions.

[[〈| i == e, ..., in == en |〉]]E = λ M : Model • {i 7→ [[e]]EM, ..., in 7→ [[en]]EM}

In terms of the semantic universe, its semantic value, given a model M, is the set of pairs enumerated by its
names each associated with the semantic value of the associated expression in M.

C.6.36 Tuple extension

C.6.36.1 Syntax

Expression = ...
| (-tok , Expression , ,-tok , Expression , { ,-tok , Expression } ,)-tok
| ...
;

C.6.36.2 Type

Σ `E e o
o τ ... Σ `E en o

o τn

Σ `E ((e o
o τ), ..., (en o

o τn)) o
o τ

(
τ = τ × ...× τn

)
In a tuple extension expression (e, ..., en), the type of the whole expression is the Cartesian product of the types
of the individual component expressions.

C.6.36.3 Semantics

The value of the tuple extension expression (e, ..., en) is the tuple containing the values of its expressions in
order.

[[(e, ..., en)]]E = λ M : Model • ([[e]]EM, ..., [[en]]EM)

In terms of the semantic universe, its semantic value, given a model M, is the tuple whose components are the
semantic values of the component expressions in M.

c©ISO/IEC 2002—All rights reserved 155

ISO/IEC 13568:2002(E) C Organisation by concrete syntax production

C.6.37 Characteristic definite description

C.6.37.1 Syntax

Expression = ...
| (-tok , µ , SchemaText ,)-tok
| ...
;

C.6.37.2 Transformation

The value of the characteristic definite description expression (µ t) is the sole value of the characteristic tuple of
schema text t.

(µ t) =⇒ µ t • chartuple t

It is semantically equivalent to the corresponding definite description expression in which the characteristic tuple
is made explicit.

C.6.38 Parenthesized expression

C.6.38.1 Syntax

Expression = ...
| (-tok , Expression ,)-tok
| ...
;

C.6.38.2 Transformation

The value of the parenthesized expression (e) is the value of expression e.

(e) =⇒ e

It is semantically equivalent to e.

C.7 Schema text

C.7.1 Introduction

A SchemaText introduces local variables, with constraints on their values.

C.7.2 Syntax

SchemaText = [DeclPart] , [|-tok , Predicate] ;

DeclPart = Declaration , { (; -tok | NL) , Declaration } ;

Declaration = DeclName , { ,-tok , DeclName } , : , Expression
| DeclName , == , Expression
| Expression
;

156 c©ISO/IEC 2002—All rights reserved

C Organisation by concrete syntax production ISO/IEC 13568:2002(E)

C.7.3 Transformation

There is no separate schema text class in the annotated syntax: all concrete schema texts are transformed to
expressions.

C.7.3.1 Declaration

Each declaration is transformed to an equivalent expression.

A constant declaration is equivalent to a variable declaration in which the variable ranges over a singleton set.

i == e =⇒ i : {e}

A comma-separated multiple declaration is equivalent to the schema conjunction of variable construction expres-
sions in which all variables are constrained to be of the same type.

i, ..., in : e =⇒ [i : e o
o α] ∧ ... ∧ [in : e o

o α]

C.7.3.2 DeclPart

Each declaration part is transformed to an equivalent expression.

d; ...; dn =⇒ d ∧ ... ∧ dn

If NL tokens have been used in place of any ; s, the same transformation to schema conjunctions applies.

C.7.3.3 SchemaText

Given the above transformations of Declaration and DeclPart, any DeclPart in a SchemaText can be assumed
to be a single expression.

A SchemaText with non-empty DeclPart and Predicate is equivalent to the schema construction expression
containing that schema text.

e | p =⇒ [e | p]

If both DeclPart and Predicate are omitted, the schema text is equivalent to the set containing the empty
binding.

=⇒ {〈| |〉}

If just the DeclPart is omitted, the schema text is equivalent to the schema construction expression in which
there is a set containing the empty binding.

| p =⇒ [{〈| |〉} | p]

c©ISO/IEC 2002—All rights reserved 157

ISO/IEC 13568:2002(E) D Tutorial

Annex D
(informative)

Tutorial

D.1 Introduction

The aim of this tutorial is to show, by examples, how this International Standard can be used to determine
whether a specification is a well-formed Z sentence, and if it is, to determine its semantics. The examples cover
some of the more difficult parts of Z, and some of the most recent innovations in the Z notation.

D.2 Semantics as models

The semantics of a specification is determined by sets of models, each model being a function from names defined
by the specification to values that those names are permitted to have by the constraints imposed on them in the
specification. For example, consider the following specification.

n : N

n ∈ {1, 2, 3, 4}

This specification introduces one name with four possible values (ignoring the prelude section for the moment).
The set of models defining the meaning of the specification contains four models, as follows.

{{n 7→ 1}, {n 7→ 2}, {n 7→ 3}, {n 7→ 4}}

One model of the prelude section can be written as follows.

{A 7→ A,
N 7→ N,
number literal 0 7→ 0,
number literal 1 7→ 1,

+ 7→ {((0, 0), 0), ((0, 1), 1), ((1, 0), 1), ((1, 1), 2), ...}}

The behaviour of (+) on non-natural numbers, e.g. reals, has not been defined at this point, so the set of
models for the prelude section includes alternatives for every possible extended behaviour of addition. The set of
models for the whole specification arises from extending models of the prelude section with associations for n in
all combinations.

This International Standard specifies the relation between Z specifications and their semantics in terms of sets of
models. That relation is specified as a composition of relations, each implementing a phase within the standard.
Those phases are as identified in Figure 1 in the conformance clause, namely mark-up, lexing, parsing, character-
ising, syntactic transformation, type inference, semantic transformation and semantic relation. The rest of this
tutorial illustrates the effects of those phases on example Z phrases.

D.3 Given types and schema definition paragraphs

The following two paragraphs are taken from the birthday book specification [13].

[NAME ,DATE]

BirthdayBook
known : PNAME
birthday : NAME 7→ DATE

known = dom birthday

The mark-up, lexing, parsing and syntactic transformation phases are illustrated using this example.

158 c©ISO/IEC 2002—All rights reserved

D Tutorial ISO/IEC 13568:2002(E)

D.3.1 Mark-up

The mathematical representation of Z is what one would write with pen, pencil, chalk, etc. For the purpose of
formal definition in this International Standard, the two paragraphs are represented by the following sequence of
Z characters.

ZEDCHAR
[NAME ,DATE]
ENDCHAR
SCHCHAR BirthdayBook
known : PNAME NLCHAR
birthday : NAME 7→ DATE
|
known = dom birthday
ENDCHAR

Here, ZEDCHAR, ENDCHAR, SCHCHAR and NLCHAR are individual Z characters. The only newline Z character in this
sequence is the NLCHAR; the sequence is presented on multiple lines for ease of reading.

Instructing a computer to produce the mathematical representation currently requires the use of a mark-up
language. There are many different mark-up languages, each tailored to different circumstances, such as particular
typesetting software. This International Standard defines some mark-ups in annex A, by relating substrings of
the mark-up language to sequences of Z characters. Source text for the birthday-book paragraphs written in the
mark-ups defined in annex A follow. Annex A provides a sufficient specification of the translation to a sequence
of Z characters, without saying exactly how that translation is to be performed.

D.3.1.1 LATEX mark-up

\begin{zed}
[NAME, DATE]
\end{zed}

\begin{schema}{BirthdayBook}
known : \power NAME\\
birthday : NAME \pfun DATE
\where
known = \dom birthday
\end{schema}

D.3.1.2 Email mark-up

%%Z
[NAME, DATE]
%%

+-- BirthdayBook ---
known : %P NAME
birthday : NAME -|-> DATE
|--
known = dom birthday

D.3.2 Lexing

Lexing is the translation of a specification’s sequence of Z characters to a corresponding sequence of tokens. The
translation is defined by the lexis in clause 7. Associated with the tokens NAME and NUMERAL are the original

c©ISO/IEC 2002—All rights reserved 159

ISO/IEC 13568:2002(E) D Tutorial

names and numerals. Here is the sequence of tokens corresponding to the extract from the birthday book, with
-tok suffices omitted and the spellings of NAMEs revealed.

ZED [NAME(NAME), NAME(DATE)] END
SCH NAME(BirthdayBook)
NAME(known) : P NAME(NAME) NL
NAME(birthday) : NAME(NAME) I(7→) NAME(DATE)
|
NAME(known) = NAME(dom) NAME(birthday)
END

The layout here is of no significance: there is an NL token where one is needed. The paragraph outline has been
replaced by a SCH box token, to satisfy the linear syntax requirement of the syntactic metalanguage. NAME and I
are name tokens: this abstraction allows the fixed size grammar of the concrete syntax to cope with the extensible
Z notation.

This specification’s sequence of Z characters does conform to the lexis. If it had not, then subsequent phases
would not be applicable, and this International Standard would not define a meaning for the specification.

D.3.3 Parsing

Parsing is the translation of the sequence of tokens produced by lexing to a tree structure, grouping the tokens
into grammatical phrases. The grammar is defined by the concrete syntax in clause 8. The parse tree for the
birthday-book specification is shown in Figure D.1.

A parse tree does not contain all of the text, but it contains sufficient information to unparse equivalent text.
Each node in a parse tree corresponds to a production in the concrete syntax. Its children are the syntactic
productions referenced by that syntactic production in order. The spellings of NAMEs and values of NUMERALs are
recorded, but keyword tokens are omitted. To save space elsewhere in this International Standard, parse trees
are presented as unparsed text, with parentheses inserted where precedence and associativity dictates.

This specification’s sequence of tokens does conform to the concrete syntax. If it had not, then subsequent phases
would not be applicable, and this International Standard would not define a meaning for the specification.

D.3.4 Syntactic transformation

The meaning of a Z specification is established by relating it to an interpretation in a semantic universe. That
relation is expressed using ZF set theory, which is not itself formally defined. It is therefore beneficial to define
as much Z notation as possible by transformations to other Z notation, so that only a relatively small kernel need
be related using ZF set theory. Conveniently, that Z kernel contains largely notation that has direct counterparts
in traditional ZF set theory, the novel Z notation having been largely transformed away. A further benefit is that
the transformations reveal relationships between different Z notations. The syntactic transformation stage is one
of several phases of such transformation.

The syntactic transformation rules (clause 12) are applied to a parsed sentence of the concrete syntax (clause 8).
The notation that results is a sentence of the annotated syntax (clause 10).

Consider the effect of the syntactic transformation rules on the birthday book extract. There is no syntactic
transformation rule for given types; given types are in the annotated syntax. So the first paragraph is left
unchanged.

ZED [NAME(NAME), NAME(DATE)] END

The schema paragraph requires several syntactic transformations before it becomes a sentence of the annotated
syntax. The order in which these syntactic transformations are applied does not matter, as the same result is
obtained.

Transform NL by DeclPart rule in 12.2.7.2.

160 c©ISO/IEC 2002—All rights reserved

D Tutorial ISO/IEC 13568:2002(E)

Anonymous specification
Given types paragraph

NAME (NAME)
NAME (DATE)

Schema definition paragraph
NAME (BirthdayBook)
SchemaText

DeclPart

Declaration

DeclName
NAME (known)

Powerset expression
Reference expression

RefName
NAME (NAME)

Declaration

DeclName
NAME (birthday)

Application expression
Application

InfixApp

Reference expression
RefName

NAME (NAME)
I (7→)
Reference expression

RefName
NAME (DATE)

Relation predicate
InfixRel

Reference expression
RefName

NAME (known)
=
Application expression

Application

PrefixApp
PRE (dom)
Reference expression

RefName
NAME (birthday)

Figure D.1 — Concrete parse tree of birthday book example

c©ISO/IEC 2002—All rights reserved 161

ISO/IEC 13568:2002(E) D Tutorial

SCH NAME(BirthdayBook)
NAME(known) : P NAME(NAME) ∧
NAME(birthday) : NAME(NAME) I(7→) NAME(DATE)
|
NAME(known) = NAME(dom) NAME(birthday)
END

Transform generic application NAME 7→ DATE by fourth InfixApp rule in 12.2.11.3.

SCH NAME(BirthdayBook)
NAME(known) : P NAME(NAME) ∧
NAME(birthday) : NAME(1 7→1) [NAME(NAME), NAME(DATE)]
|
NAME(known) = NAME(dom) NAME(birthday)
END

Transform equality by second InfixRel rule in 12.2.10.3.

SCH NAME(BirthdayBook)
NAME(known) : P NAME(NAME) ∧
NAME(birthday) : NAME(1 7→1) [NAME(NAME), NAME(DATE)]
|
NAME(known) ∈ {NAME(dom) NAME(birthday)}
END

Transform declarations by second Declaration rule in 12.2.7.1.

SCH NAME(BirthdayBook)
[NAME(known) : P NAME(NAME) o

o α] ∧
[NAME(birthday) : NAME(1 7→1) [NAME(NAME), NAME(DATE)] o

o α]
|
NAME(known) ∈ {NAME(dom) NAME(birthday)}
END

Transform schema text by first SchemaText rule in 12.2.7.3.

SCH NAME(BirthdayBook)
[[NAME(known) : P NAME(NAME) o

o α] ∧
[NAME(birthday) : NAME(1 7→1) [NAME(NAME), NAME(DATE)] o

o α]
|
NAME(known) ∈ {NAME(dom) NAME(birthday)}]
END

Transform paragraph by schema definition paragraph rule in 12.2.3.1.

AX
[NAME(BirthdayBook) ==
[[NAME(known) : P NAME(NAME) o

o α] ∧
[NAME(birthday) : NAME(1 7→1) [NAME(NAME), NAME(DATE)] o

o α]
|
NAME(known) ∈ {NAME(dom) NAME(birthday)}]]
END

162 c©ISO/IEC 2002—All rights reserved

D Tutorial ISO/IEC 13568:2002(E)

Finally, transform anonymous specification by rule in 12.2.1.1.

Mathematical toolkit
ZED section Specification parents standard toolkit END
AX
[NAME(BirthdayBook) ==
[[NAME(known) : P NAME(NAME) o

o α] ∧
[NAME(birthday) : NAME(1 7→1) [NAME(NAME), NAME(DATE)] o

o α]
|
NAME(known) ∈ {NAME(dom) NAME(birthday)}]]
END

This is now a sentence of the annotated syntax. These syntactic transformations do not change the meaning:
the meaning of the annotated representation is the same as that of the original schema paragraph. This is
ensured, despite transformations to notations of different precedences, by transforming trees not text—the trees
are presented as text above solely to save space. The annotated tree at this point is shown in Figure D.2. To
explain type inference, we will move to a simpler example.

Do not be surprised that the result of syntactic transformation looks “more complicated” than the original
formulation—if it did not, there would not have been much point in having the notation that has been transformed
away. The benefits are that fewer notations remain to be defined, and those that have been defined have been
defined entirely within Z.

D.4 Axiomatic description paragraphs

Here is a very simple axiomatic description paragraph, preceded by an auxiliary given types paragraph.

[X]

i : X

D.4.1 Lexing and parsing

Lexing generates the following sequence of tokens, with corresponding spellings of name tokens.

ZED [NAME(X)] END
AX NAME(i) : NAME(X) END

Parsing proceeds as for the birthday book, so is not explained in detail again.

D.4.2 Syntactic transformation

The schema text is transformed to an expression.

AX [NAME(i) : NAME(X)] END

With the application of the rule in 12.2.1.1 to add a section header, this becomes a sentence of the annotated
syntax.

D.4.3 Type inference

The type inference phase adds annotations to each expression and each paragraph in the parse tree. Without
going into too much detail, the signature of the given types paragraph is determined by the rule in 13.2.4.1 to be
X : P(GIVEN X).

ZED [NAME(X)] END o
o X : P(GIVEN X)

c©ISO/IEC 2002—All rights reserved 163

ISO/IEC 13568:2002(E) D Tutorial

Sectioned specification
Mathematical toolkit
Inheriting section

NAME (Specification)
NAME (standard toolkit)
Given types paragraph

NAME (NAME)
NAME (DATE)

Axiomatic description paragraph
Variable construction expression

NAME (BirthdayBook)
Schema construction expression

Schema conjunction expression
Variable construction expression

NAME (known)
Powerset expression o

o α
Reference expression

NAME (NAME)
Variable construction expression

NAME (birthday)
Generic instantiation expression o

o α
NAME (1 7→1)
Reference expression

NAME (NAME)
Reference expression

NAME (DATE)
Membership predicate

Reference expression
NAME (known)

Set extension expression
Application expression

Reference expression
NAME (dom)

Reference expression
NAME (birthday)

Figure D.2 — Tree of birthday book example after syntactic transformation

164 c©ISO/IEC 2002—All rights reserved

D Tutorial ISO/IEC 13568:2002(E)

Sectioned specification
Inheriting section o

o X : (Specification,P(GIVEN X)); i : (Specification, GIVEN X)
NAME (Specification)
NAME (standard toolkit)
Given types paragraph o

o [X : P(GIVEN X)]
NAME (X)

Axiomatic description paragraph o
o [i : GIVEN X]

Variable construction expression o
o P[i : GIVEN X]

NAME (i)
Reference expression o

o P(GIVEN X)
NAME (X)

Figure D.3 — Annotated tree of axiomatic example

The rule in 13.2.2.1 adds the name of the given type X to the type environment, associated with type P(GIVEN X).
The annotation for the reference expression referring to X is determined by the rule in 13.2.6.1 using that type
environment to be P(GIVEN X). Hence the type of the variable construction expression is found by the rule in
13.2.6.13 to be P[i : GIVEN X]. Hence the signature of the axiomatic description paragraph is determined. The
resulting annotated tree is shown in Figure D.3, and as linear text as follows.

AX ([NAME(i) : (NAME(X) o
o P(GIVEN X))] o

o P[i : GIVEN X]) END o
o i : GIVEN X

This specification’s parse tree is well-typed. If it were not, then subsequent phases would not be applicable, and
this International Standard would not define a meaning for the specification.

D.4.4 Semantic relation

The semantic relation phase takes a sentence of the annotated syntax and relates it to its meaning in terms of
sets of models. The meaning of a paragraph D is given by the semantic relation [[D]]D, which relates a model to
that same model extended with associations between its names and their semantic values in the given model. For
the example given types paragraph, the semantic relation in 15.2.3.1 relates any model to that model extended
with an association of the given type name X with an arbitrarily chosen set w . (A further association is made
between a distinctly decorated version of the given type name X♥ and that same semantic value, for use in
avoiding variable capture.)

{X 7→ w ,X♥ 7→ w}

This is one model of the prefix of the specification up to the given types paragraph (ignoring the prelude). The
set of models defining the meaning of this prefix includes other models, each with a different set w .

The meaning of an expression e is given by the semantic function [[e]]E , which maps the expression to its semantic
value in a given model. Within the axiomatic description paragraph, the reference to the given type X has a
semantic value determined by the relation in 15.2.5.1 as being the semantic value w already associated with the
given type name X in the model. The variable construction expression [i : X] has a semantic value determined
by the relation in 15.2.5.9 that represents a set of bindings of the name i to members of the semantic value of
the reference to X , i.e. the set w . The meaning of the example axiomatic description paragraph, as given by the
semantic relation in 15.2.3.2, is to relate any model to that model extended with a binding that is in the set that
is the semantic value of the variable construction expression. So, if the members of w are w1,w2, ..., then the set
of models defining the meaning of the specification includes the following.

{{X 7→ w ,X♥ 7→ w , i 7→ w1}, {X 7→ w ,X♥ 7→ w , i 7→ w2}, ...}

If w is chosen to be the empty set, then the set of models is empty.

c©ISO/IEC 2002—All rights reserved 165

ISO/IEC 13568:2002(E) D Tutorial

D.5 Generic axiomatic description paragraphs

Here is a generic axiomatic description paragraph. Although it looks simple, it has the complication of being a
loose generic definition.

[X]
i : PX

D.5.1 Lexing and parsing

Lexing generates the following sequence of tokens, with corresponding spellings of name tokens.

GENAX [NAME(X)] NAME(i) : P NAME(X) END

Parsing proceeds as for the birthday book, so is not explained in detail again.

D.5.2 Syntactic transformation

The schema text is transformed to an expression.

GENAX [NAME(X)] [NAME(i) : P NAME(X)] END

With the application of the rule in 12.2.1.1 to add a section header, this becomes a sentence of the annotated
syntax.

D.5.3 Type inference

Without going into too much detail, the rule in 13.2.4.3 adds the name of the generic parameter X to the type
environment, associated with type P(GENTYPE X). The annotation for the reference expression referring to X
is determined by the rule in 13.2.6.1 using that type environment to be P(GENTYPE X). Hence the type of
the powerset expression is found by the rule in 13.2.6.5 to be PP(GENTYPE X). Hence the type of the variable
construction expression is found by the rule in 13.2.6.13 to be P[i : P(GENTYPE X)]. Hence the signature of the
generic axiomatic description paragraph is determined.

GENAX [NAME(X)] ([NAME(i) : (P(NAME(X) o
o P(GENTYPE X)) o

o PP(GENTYPE X))] o
o P[i : P(GENTYPE X)]) END

o
o i : P(GENTYPE X)

D.5.4 Semantic relation

Every use of a generic definition instantiates the generic parameters with particular sets. A suitable semantic
value for a generic definition is therefore a function from the semantic values of the sets instantiating the generic
parameters to the semantic value of the definition given those values for the parameters. In the case of a loose
generic definition, several models are needed to express its semantics, each giving a different function. Each model
defining the meaning of the example generic axiomatic description paragraph has the following form.

{i 7→ {s1 7→ subset of s1, s2 7→ subset of s2, ...}}

The model associates the name i with a function from sets s1, s2, ... instantiating the generic parameter X to
the semantic value of i resulting from the corresponding instantiation. Different models for this paragraph have
different subsets of s1, s2, The way this is defined by the semantic relations is roughly as follows.

The semantic relation in 15.2.3.3 specifies that w is a binding in the semantic value of schema e in the given
model extended with an association of the generic parameter X with the set instantiating it w1. (The model is
also extended with a further association between a distinctly decorated version of the generic parameter X♠ and
that same semantic value w1, for use in avoiding variable capture). This is specified in a way that is cautious of
e being undefined in the extended model. The determination of the value of e is done in the same way as for the
preceding example, using the semantic relations in 15.2.5.5, 15.2.5.1 and 15.2.5.9. The semantic relation for the
paragraph is then able to extend its given model with the association illustrated above.

166 c©ISO/IEC 2002—All rights reserved

D Tutorial ISO/IEC 13568:2002(E)

D.6 Operator templates and generics

The definition of relations in the toolkit provides an example of an operator template and the definition of a
generic operator.

generic 5 rightassoc (↔)

X ↔ Y == P(X ×Y)

D.6.1 Lexing and parsing

An operator template paragraph affects the lexing and parsing of subsequent paragraphs. In this example, it causes
subsequent appearances of names using the word ↔ to be lexed as I tokens, and hence its infix applications are
parsed as operator names (illustrated in the example) or as generic operator application expressions. An operator
template paragraph does not have any further effect on the meaning of a specification, so a parsed representation
is needed of only the generic operator definition paragraph, for which lexing generates the following sequence of
tokens and corresponding spellings of name tokens.

ZED NAME(X) I(↔) NAME(Y) == P(NAME(X)× NAME(Y)) END

Parsing proceeds as for the birthday-book example, so is not explained in detail again.

D.6.2 Syntactic transformation

The generic operator name is transformed by the first InfixGenName rule in 12.2.9.3.

ZED NAME(1↔1)[NAME(X), NAME(Y)] == P(NAME(X)× NAME(Y)) END

This generic horizontal definition paragraph is then transformed by the rule in 12.2.3.4 to a generic axiomatic
description paragraph, which is the sole form of generic definition for which there is a semantic relation.

GENAX [NAME(X), NAME(Y)]
NAME(1↔1) == P(NAME(X)× NAME(Y))
END

Transform Cartesian product expression by the rule in 12.2.6.8 to a set of pairs.

GENAX [NAME(X), NAME(Y)]
NAME(1↔1) == P{NAME(x) : NAME(X); NAME(y) : NAME(Y) • (NAME(x), NAME(y))}
END

Transform declaration by first Declaration rule in 12.2.7.1.

GENAX [NAME(X), NAME(Y)]
NAME(1↔1) : {P{NAME(x) : NAME(X); NAME(y) : NAME(Y) • (NAME(x), NAME(y))}}
END

Apply the DeclPart transformation in 12.2.7.2 in three places.

GENAX [NAME(X), NAME(Y)]
[NAME(1↔1) : {P{[NAME(x) : NAME(X) o

o α] ∧ [NAME(y) : NAME(Y) o
o α] • (NAME(x), NAME(y))}} o

o α]
END

With the application of the rule in 12.2.1.1 to add a section header, this becomes a sentence of the annotated
syntax.

c©ISO/IEC 2002—All rights reserved 167

ISO/IEC 13568:2002(E) D Tutorial

Generic axiomatic description paragraph o
o 1↔1 : P(P(GENTYPE X × GENTYPE Y))

NAME (X)
NAME (Y)
Variable construction expression o

o P[1↔1 : P(P(GENTYPE X × GENTYPE Y))]
NAME (1↔1)
Set extension expression o

o P(P(P(GENTYPE X × GENTYPE Y)))
Powerset expression o

o P(P(GENTYPE X × GENTYPE Y))]
Set comprehension expression o

o P(GENTYPE X × GENTYPE Y)
Schema conjunction expression o

o P[x : GENTYPE X ; y : GENTYPE Y]
Variable construction expression o

o P[x : GENTYPE X]
NAME (x)
Reference expression o

o P(GENTYPE X)
NAME (X)

Variable construction expression o
o P[y : GENTYPE Y]

NAME (y)
Reference expression o

o P(GENTYPE Y)
NAME (Y)

Tuple extension expression o
o GENTYPE X × GENTYPE Y

Reference expression o
o GENTYPE X

NAME (x)
Reference expression o

o GENTYPE Y
NAME (y)

Figure D.4 — Annotated tree of generic example

D.6.3 Type inference

The type inference phase adds annotations to the parse tree. For this example, the resulting tree is shown in
Figure D.4.

Informally, the way the annotations are determined is as follows. The type inference rule for generic axiomatic
description paragraph (see 13.2.4.3) overrides the type environment with types for the generic parameters X and
Y . The type inference rule for reference expression (see 13.2.6.1) retrieves these types for the references to X
and Y . The type inference rule for variable construction expression (see 13.2.6.13) builds the schema types.
The type inference rule for schema conjunction expression (see 13.2.6.16) merges those schema types. The type
inference rule for set comprehension expression (see 13.2.6.4) overrides the type environment with types for the
local declarations x and y . The type inference rule for reference expression (see 13.2.6.1) retrieves these types
for the references to x and y . The type inference rule for tuple extension expression (see 13.2.6.6) builds the
Cartesian product type. The type of the set comprehension is thus determined, and hence that of the powerset
by the rule in 13.2.6.5 and that of the set extension by the rule in 13.2.6.3.

D.6.4 Semantic relation

For the example generic axiomatic description paragraph, the semantic relation in 15.2.3.3 associates name 1↔1

with a function from the semantic values of the sets instantiating the generic parameters X and Y to the semantic
value of the powerset expression given those values for X and Y . The semantic value of the example’s powerset
expression is given by the semantic relations in 15.2.5.4, 15.2.5.5 and 15.2.5.6 as sets of tuples in ZF set theory.
Hence the example generic axiomatic description paragraph adds the following association to the meaning of the
specification.

168 c©ISO/IEC 2002—All rights reserved

D Tutorial ISO/IEC 13568:2002(E)

1↔1 7→ {(set for X , set for Y) 7→ value of powerset expression given that X and Y ,
and so on for all combinations of sets for X and Y }

The syntactic transformation in 12.2.3.4 moved the name of the generic operator to after the generic parameters.
In constructing this association, the name had to be lifted back out again. This has sometimes been called the
generic lifting operation.

D.7 List arguments

An operator that forms an indexed-from-zero sequence can be introduced and defined as follows. The definition
uses several toolkit notations.

function (〈0, ,〉0)

〈0, ,〉0[X] == λ s : seq X • {b : dom s; r : ran s • b − 1 7→ r}

The semantics of an application of this operator, for example 〈01, 2, 1〉0, are defined as follows.

D.7.1 Lexing and parsing

The application is recognised as being an instance of the NofixApp rule in the concrete syntax, the word 〈0 being
lexed as a L token and the word 〉0 being lexed as a SR token. Between those brackets, 1, 2, 1 is recognised as an
ExpressionList.

L(〈0) NUMERAL(1), NUMERAL(2), NUMERAL(1) SR(〉0)

D.7.2 Syntactic transformation

The ExpressionList is transformed to an expression by rule 12.2.12.

L(〈0) {(NUMERAL(1), NUMERAL(1)), (NUMERAL(2), NUMERAL(2)), (NUMERAL(3), NUMERAL(1))} SR(〉0)

The NofixApp is transformed to an application expression.

NAME(〈01〉0) {(NUMERAL(1), NUMERAL(1)), (NUMERAL(2), NUMERAL(2)), (NUMERAL(3), NUMERAL(1))}

The operator notation has now been eliminated, and so the semantic definition proceeds as usual for the remaining
notation. All applications of operator notation are eliminated by such syntactic transformations.

D.8 Mutually recursive free types

The standard notation for free types is an extension of the traditional notation, to allow the specification of
mutually recursive free types, such as the following example.

exp ::= Node〈〈N1〉〉
| Cond〈〈pred × exp × exp〉〉

&
pred ::= Compare〈〈exp × exp〉〉

This specifies a tiny language, in which an expression exp can be a conditional involving a predicate pred , and a
pred compares expressions. A more realistic example would have more kinds of expressions and predicates, and
maybe other auxiliary types perhaps in mutual recursion with these two, but this small example suffices here.

Like the previous examples, the source text for this one has to be taken through the phases of mark-up, lexing,
parsing, syntactic transformation and type inference. (There are no applicable characterisations or instantiations.)
The focus here is on the semantic transformation of free types. (Strictly, the Cartesian products should be
syntactically transformed first, but keeping them makes the following more concise.)

c©ISO/IEC 2002—All rights reserved 169

ISO/IEC 13568:2002(E) D Tutorial

D.8.1 Semantic transformation

Transforming the above free types paragraph by the rule in 12.2.3.5 generates the following Z notation. The
semantic transformation rules are defined in terms of concrete notation for clarity, which should itself be subjected
to further transformations, though that is not done here.

D.8.1.1 Type declarations

[exp, pred]

D.8.1.2 Membership constraints

Node : P(N1 × exp)
Cond : P((pred × exp × exp)× exp)
Compare : P((exp × exp)× pred)

D.8.1.3 Total functionality constraints

∀ u : N1 • ∃1 x : Node • x .1 = u
∀ u : pred × exp × exp • ∃1 x : Cond • x .1 = u
∀ u : exp × exp • ∃1 x : Compare • x .1 = u

D.8.1.4 Injectivity constraints

∀ u, v : N1 | Node u = Node v • u = v
∀ u, v : pred × exp × exp | Cond u = Cond v • u = v
∀ u, v : exp × exp | Compare u = Compare v • u = v

D.8.1.5 Portmanteau disjointness constraint

There are no disjointness constraints from the pred type as it has only one injection and no element values.

∀ b1, b2 : N •
∀w : exp |

(b1 = 1 ∧ w ∈ {x : Node • x .2} ∨
b1 = 2 ∧ w ∈ {x : Cond • x .2})

∧ (b2 = 1 ∧ w ∈ {x : Node • x .2} ∨
b2 = 2 ∧ w ∈ {x : Cond • x .2}) •

b1 = b2

D.8.1.6 Induction constraint

∀w1 : P exp; w2 : P pred |
(∀ y : (µ exp == w1; pred == w2 • N1) •

Node y ∈ w1) ∧
(∀ y : (µ exp == w1; pred == w2 • pred × exp × exp) •

Cond y ∈ w1) ∧
(∀ y : (µ exp == w1; pred == w2 • exp × exp) •

Compare y ∈ w2) •
w1 = exp ∧ w2 = pred

170 c©ISO/IEC 2002—All rights reserved

D Tutorial ISO/IEC 13568:2002(E)

D.9 Chained relations and implicit generic instantiation

The semantics of chained relations is defined to give a meaning to this example,

{1} 6= ∅ ⊆ {2, 3}

in which ∅ refers to the generic definition of empty set and so is implicitly instantiated, whilst rejecting the
following example as being not well-typed,

{(1, 2)} 6= ∅ ⊆ A

because the single ∅ expression in the second example needs to be instantiated differently for the two relations.

To demonstrate how this is done, the former example is taken through syntactic transformation and type inference,
including the filling in of the implicit instantiations.

D.9.1 Syntactic transformation

The chaining is transformed by the first InfixRel rule in 12.2.10.3 to a conjunction of relations in which the
duplicates of the common expression are constrained to be of the same type by giving them the same annotation.

{1} 6= (∅ o
o α) ∧ (∅ o

o α) ⊆ {2, 3}

The third InfixRel rule in 12.2.10.3 transforms these two relations to membership predicates.

({1}, (∅ o
o α)) ∈ 1 6=1 ∧ ((∅ o

o α), {2, 3}) ∈ 1⊆1

This is now a phrase of the annotated syntax.

D.9.2 Type inference

Type inference on this example generates the annotations illustrated in Figure D.5.

Those reference expressions that refer to generic definitions have to be transformed to generic instantiation
expressions for their meaning to be determined. This is done by the instantiation rule (see 13.2.3.3). It determines
the generic instantiations by comparison of the generic type with the inferred type. For example, the references
to ∅ have been given the type annotation P(GIVEN A), which is the instance of [X]P(GENTYPE X) in which
GENTYPE X is GIVEN A. The desired instantiating expression is the carrier set of that type, which is A. It is
generated by the instantiation rule, which effects the following transformation.

∅ o
o [X]PX ,P(GIVEN A) =⇒ ∅[A o

o P(GIVEN A)] o
o P(GIVEN A)

Similarly, the reference to 16=1 has type P(P(GIVEN A)×P(GIVEN A)) which is the instance of [X]P(GENTYPE X ×
GENTYPE X) in which GENTYPE X is P(GIVEN A). The instantiating expression is the carrier set of that type, which
is PA.

Similarly again, the reference to 1⊆1 has type P(P(GIVEN A) × P(GIVEN A)) which is the instance of
[X]P(P(GENTYPE X) × P(GENTYPE X)) in which GENTYPE X is GIVEN A. The instantiating expression is the
carrier set of that type, which is A.

D.10 Logical inference rules

This document does not attempt to standardise any particular deductive system for Z. However, the soundness
of potential logical inference rules can be shown relative to the sets of models defined by the semantics. Some
examples are given here.

c©ISO/IEC 2002—All rights reserved 171

ISO/IEC 13568:2002(E) D Tutorial

Conjunction predicate
Membership predicate

Tuple extension expression o
o P(GIVEN A)× P(GIVEN A)

Set extension expression o
o P(GIVEN A)

Number literal expression o
o GIVEN A

NUMERAL (1)
Reference expression o

o [X]P(GENTYPE X), P(GIVEN A)
NAME (∅)

Reference expression o
o [X]P(GENTYPE X × GENTYPE X), P(P(GIVEN A)× P(GIVEN A))

NAME (1 6=1)
Membership predicate

Tuple extension expression o
o P(GIVEN A)× P(GIVEN A)

Reference expression o
o [X]P(GENTYPE X), P(GIVEN A)

NAME (∅)
Set extension expression o

o P(GIVEN A)
Number literal expression o

o GIVEN A
NUMERAL (2)

Number literal expression o
o GIVEN A

NUMERAL (3)
Reference expression o

o [X]P(P(GENTYPE X)× P(GENTYPE X)), P(P(GIVEN A)× P(GIVEN A))
NAME (1⊆1)

Figure D.5 — Annotated tree of chained relation example

The predicate true can be used as an axiom. The proof of this is trivial: an axiom p is sound if and only
if [[p]]P = Model (as given by the definition of soundness in 5.2.3), and from the semantic relation for truth
predicates (see 15.2.4.2), [[true]]P = Model .

The inference rule with premise ¬ ¬ p and consequent p is sound if and only if

[[¬ ¬ p]]P ⊆ [[p]]P

(again as given by the definition of soundness in 5.2.3). By two applications of the semantic relation for negation
predicate (see 15.2.4.3), this becomes

Model \ (Model \ [[p]]P) ⊆ [[p]]P

which by properties of set difference becomes

[[p]]P ⊆ [[p]]P

which is a property of set inclusion.

The transformation rules of clauses 12 and 14 inspire corresponding logical inference rules: any logical infer-
ence rule whose sole premise matches the left-hand side of a transformation rule and whose consequent is the
corresponding instantiation of that transformation rule’s right-hand side is sound.

172 c©ISO/IEC 2002—All rights reserved

E Conventions for state-based descriptions ISO/IEC 13568:2002(E)

Annex E
(informative)

Conventions for state-based descriptions

E.1 Introduction

This annex records some of the conventions of notation that are often used when state-based descriptions of
systems are written in Z. Conventions for identifying before and after states (x and x ′) and input and output
variables (i? and o!) are given.

E.2 States

When giving a model-based description of a system, the state of the system and the operations on the state are
specified. Each operation is described as a relation between states. It is therefore necessary to distinguish between
the values of state variables before the operation and their values afterwards. The convention in Z described here
is to use dashes (primes) to make this distinction: if the state variables are x and y , then a predicate describing
an operation is written using the variables x , y , x ′, y ′, where x and y denote the values before the operation, and
x ′ and y ′ denote the values afterwards. (The predicate can also refer to any global constants.) For instance,
if x and y are both integer variables, then an operation which incremented both variables could be specified as
follows.

x ′ = x + 1 ∧ y ′ = y + 1

In order to use predicates like this to describe operations, all of the variables have to be in scope. If the state
has been described in a schema S , then including S in the declaration part of the operation schema brings the
state variables—x and y in the example above—into scope. The after-state variables are similarly introduced
by including S ′: this is a schema obtained from S by adding a dash to all the variables in the signature of S ,
and replacing every occurrence of such a variable in the predicate part of S by its dashed counterpart. Notice
that the variables from the signature of S are the only ones which are dashed; global constants, types etc remain
undashed. If S contains a variable which has already been decorated in some way, then an extra dash is added
to the existing decoration.

Thus operations can be described in Z by a schema of the form

Op
S
S ′

...

Since the inclusion of undashed and dashed copies of the state schema is so common, an abbreviation is used:

∆S == [S ; S ′]

The operation schema above now becomes

Op
∆S

...

c©ISO/IEC 2002—All rights reserved 173

ISO/IEC 13568:2002(E) E Conventions for state-based descriptions

It should be stressed that ∆ is not an ‘operator on schemas’, merely a character in the schema name. One reason
for this is that some authors like to include additional invariants in their ∆-schemas. For instance, if S contained
an additional component z , but none of the operations ever changed z , then ∆S could be defined by

∆S == [S ; S ′ | z ′ = z] ,

thus making it unnecessary to include z ′ = z in each operation description. If a name ∆S is referred to without a
declaration of it having appeared previously, the reference is equivalent to [S ; S ′] as defined formally in 13.2.6.1.

It should be noted that strange results can occur if this implicit definition of ∆S is used on a schema S that
contains variables which are not intended to be state components, perhaps inputs or outputs (see below). The
sequence of strokes after a variable name might then become difficult to interpret.

There is one further piece of notation for describing state transitions: when enquiry operations are being described,
it is often necessary to specify that the state should not change. For this the abbreviation ΞS is used. Unless it
has been explicitly defined to mean something else, references to ΞS are equivalent to [S ; S ′ | θS = θS ′]. Note
that ΞS is not defined in terms of ∆S , in case ∆S has been given an explicit unconventional definition.

E.3 Inputs and outputs

For many systems, it is convenient to be able to describe operations not just in terms of relations between states,
but with inputs and outputs as well. The input values of an operation are provided by ‘the environment’, and
the outputs are returned to the environment.

In order to distinguish a variable intended as either an input or an output in an operation schema from a state-
before variable (which has no decoration), an additional suffix is used: ? for input variables and ! for output
variables. Thus name? denotes an input, and result ! denotes an output.

E.4 Schema operators

The schema operators pre, o
9 and >> make use of this decoration convention.

174 c©ISO/IEC 2002—All rights reserved

Bibliography ISO/IEC 13568:2002(E)

Bibliography

[1] Enderton, H.B., Elements of Set Theory Academic Press, 1977. ISBN 0-12-238440-7

[2] Hayes, I. (editor) Specification Case Studies Prentice-Hall, first edition, 1987. ISBN 0-13-826579-8

[3] Hayes, I. (editor) Specification Case Studies Prentice-Hall, second edition, 1993. ISBN 0-13-832544-8

[4] ISO/IEC 646:1991 Information technology—ISO 7-bit coded character set for information interchange 3rd
edition

[5] ISO/IEC 10646-1:2000 Information Technology—Universal Multiple-Octet Coded Character Set (UCS)—Part
1: Architecture and Basic Multilingual Plane, with amendment 1, with its amendments and corrigenda

[6] ISO/IEC 10646-2:2001 Information Technology—Universal Multiple-Octet Coded Character Set (UCS)—Part
2: Supplementary Planes1)

[7] ISO/IEC 14977:1996 Information Technology—Syntactic Metalanguage—Extended BNF

[8] King, S., Sørensen, I.H. and Woodcock, J.C.P. Z: Grammar and Concrete and Abstract Syntaxes PRG-68,
Programming Research Group, Oxford University, July 1988

[9] Lalonde, W.R. and des Rivieres, J. Handling Operator Precedence in Arithmetic Expressions with Tree Trans-
formations ACM Transactions on Programming Languages and Systems, 3(1) January 1981

[10] Lamport, L. LATEX: A Document Preparation System—User’s Guide and Reference Manual Addison-Wesley,
second edition, 1994. ISBN 0-201-52983-1

[11] Spivey, J.M., Understanding Z Cambridge University Press, 1988. ISBN 0-521-33429-2

[12] Spivey, J.M., The Z Notation—A Reference Manual Prentice-Hall, first edition, 1989. ISBN 0-13-983768-X

[13] Spivey, J.M., The Z Notation—A Reference Manual Prentice-Hall, second edition, 1992. ISBN 0-13-978529-9
Out-of-print, available from http://spivey.oriel.ox.ac.uk/~mike/zrm/index.html

[14] Sufrin, B. (editor) Z Handbook Programming Research Group, Oxford University, March 1986

[15] Toyn, I. Innovations in the Notation of Standard Z ZUM’98: The Z Formal Specification Notation, Springer-
Verlag Lecture Notes in Computer Science 1493, pp193–213, 1998. ISBN 3-540-65070-9

[16] Toyn, I, Valentine, S.H, Stepney, S. and King, S. Typechecking Z ZB2000: The International Conference of
B and Z Users, Springer-Verlag Lecture Notes in Computer Science 1878, pp264–285, 2000. ISBN 3-540-67944-8

[17] Toyn, I and Stepney, S. Characters + Mark-up = Z Lexis ZB2002: The 2nd International Conference of B
and Z Users, Springer-Verlag Lecture Notes in Computer Science 2272, pp104–123, 2002

1)To be published

c©ISO/IEC 2002—All rights reserved 175

ISO/IEC 13568:2002(E) Index

Index

+ (addition)
character, 22
in mathematical metalanguage, 7
in prelude, 43

α (alpha), see α (type variable)
| (alternatives)

in syntactic metalanguage, 3
& (ampersand)

character, 22
lexis, 28

∧ (and), see ∧ (conjunction)
o
o (annotation), 41
- (arithmetic negation)

character, 24
in mathematical toolkit, 103
LATEX mark-up, 87

| (bar)
character, 22
lexis, 28

β (beta), see β (signature variable)
�→ (bijections)

character, 23
in mathematical toolkit, 102
LATEX mark-up, 87

θ (binding construction)
expression, see binding construction expression

〈| , , |〉 (binding extension)
characters, 21
expression, see binding extension expression
LATEX mark-up, 83

. (binding selection)
expression, see binding selection expression

(cardinality)
character, 24
in mathematical metalanguage, 7
in mathematical toolkit, 107
LATEX mark-up, 87

× (Cartesian product)
character, 22
expression, see Cartesian product expression
in mathematical metalanguage, 8
LATEX mark-up, 84
lexis, 28
type, see Cartesian product type

(µ |) (characteristic definite description)
expression, see characteristic definite description

expression
{ | } (characteristic set comprehension)

expression, see characteristic set comprehension ex-
pression

: (colon)

character, 22
lexis, 28

, (comma)
character, 22
lexis, 28

, (comma), see , (concatenation)
, , (comma comma), see , , (list argument)

(∗ ∗) (comment)
in syntactic metalanguage, 3

≈ (compatible relations)
in mathematical metalanguage, 8

a (concatenation)
character, 24
in mathematical toolkit, 108
in metalanguage, 39
LATEX mark-up, 87

, (concatenation)
in syntactic metalanguage, 3

`? (conjecture)
lexis, 28
paragraph, see conjecture paragraph

∧ (conjunction)
character, 22
expression, see schema conjunction expression
in mathematical metalanguage, 5
LATEX mark-up, 84
lexis, 28
predicate, see conjunction predicate

× (cross), see × (Cartesian product)
+ (decoration metavariable)

in metalanguage, 10
== (define equal)

lexis, 28
µ | • (definite description)

expression, see definite description expression
∆ (Delta), see ∆ (state change)
δ (delta), see δ (section environment variable)
∨ (disjunction)

character, 22
expression, see schema disjunction expression
in mathematical metalanguage, 5
LATEX mark-up, 84
lexis, 28
predicate, see disjunction predicate

./ (distinguishing stroke), 41
a/ (distributed concatenation)

in mathematical toolkit, 110
LATEX mark-up, 87

C (domain restriction)
character, 23
in mathematical metalanguage, 8
in mathematical toolkit, 99
LATEX mark-up, 86

176 c©ISO/IEC 2002—All rights reserved

Index ISO/IEC 13568:2002(E)

−C (domain subtraction)
character, 23
in mathematical metalanguage, 8
in mathematical toolkit, 99
LATEX mark-up, 86

. (dot)
character, 22
lexis, 28

. . (dot dot), see . . (numeric range)
∅ (empty set)

character, 23
in mathematical metalanguage, 6
in mathematical toolkit, 95
LATEX mark-up, 86

= (equality)
character, 22
in mathematical metalanguage, 6
in syntactic metalanguage, 3
lexis, 28
predicate, see relation operator application predi-

cate
⇔ (equivalence)

character, 22
expression, see schema equivalence expression
LATEX mark-up, 84
lexis, 28
predicate, see equivalence predicate

— (exception)
in syntactic metalanguage, 3

∃ | • (existential quantification)
expression, see schema existential quantification ex-

pression
in mathematical metalanguage, 5
predicate, see existential quantification predicate

∃ (exists)
character, 22
LATEX mark-up, 84
lexis, 28

� (extraction)
character, 24
in mathematical toolkit, 109
LATEX mark-up, 87

� (filtering)
character, 24
in mathematical toolkit, 109
LATEX mark-up, 87

7 7→ (finite functions)
character, 23
in mathematical metalanguage, 9
in mathematical toolkit, 102
LATEX mark-up, 87
7 7� (finite injections)

character, 23

in mathematical toolkit, 102
LATEX mark-up, 87

∀ (for all)
character, 22
expression, see schema universal quantification ex-

pression
LATEX mark-up, 84
lexis, 28
predicate, see universal quantification predicate

::= (free type)
lexis, 28
paragraph, see free types paragraph

λ | • (function construction)
expression, see function construction expression

◦ (functional composition)
character, 23
in mathematical toolkit, 99
LATEX mark-up, 86

Γ (Gamma), see Γ (section-type environment metavari-
able)

γ (gamma), see γ (section-type environment variable)⋂
(generalized intersection)
character, 23
in mathematical toolkit, 97
LATEX mark-up, 86⋃
(generalized union)
character, 23
in mathematical toolkit, 97
LATEX mark-up, 86

♠ (generic type name stroke), 41
♥ (given type name stroke), 41
> (greater than)

character, 24
in mathematical toolkit, 104

≥ (greater than or equal)
character, 24
in mathematical toolkit, 104
LATEX mark-up, 87

♥ (heart), see ♥ (given type name stroke)
⇔ (if and only if), see ⇔ (equivalence)
⇒ (implication)

character, 22
expression, see schema implication expression
LATEX mark-up, 84
lexis, 28
predicate, see implication predicate

6= (inequality)
character, 23
in mathematical toolkit, 95
LATEX mark-up, 86

? ? (informal)
in syntactic metalanguage, 3

〈〈 〉〉 (injection brackets)

c©ISO/IEC 2002—All rights reserved 177

ISO/IEC 13568:2002(E) Index

characters, 21
in free type, see free types paragraph
LATEX mark-up, 83

? (input stroke)
character, 21
convention, 174

↑ (iterated product)
in mathematical metalanguage, 8

(iteration)
in mathematical toolkit, 106

Λ (Lambda), see Λ (section environment metavariable)
λ • (lambda)

expression, see function construction expression
λ (lambda)

character, 21
LATEX mark-up, 82
lexis, 28

< (less than)
character, 24
in mathematical toolkit, 104

≤ (less than or equal)
character, 24
in mathematical toolkit, 104
LATEX mark-up, 87

, , (list argument)
LATEX mark-up, 85
lexis, 28

7→ (maplet)
character, 23
in mathematical metalanguage, 8
in mathematical toolkit, 98
LATEX mark-up, 86

∈ (membership)
character, 22
in mathematical metalanguage, 6
LATEX mark-up, 84
lexis, 28
predicate, see membership predicate

µ • (mu)
expression, see definite description expression

µ (mu)
character, 21
LATEX mark-up, 82
lexis, 28

∗ (multiplication)
character, 24
in mathematical toolkit, 105

¬ (negation)
character, 22
expression, see schema negation expression
in mathematical metalanguage, 5
LATEX mark-up, 84
lexis, 28

predicate, see negation predicate
NL (newline conjunction)

in mathematical metalanguage, 4
predicate, see newline conjunction predicate

′ (next state stroke)
character, 21
convention, 173

6∈ (non-membership)
character, 23
in mathematical metalanguage, 6
in mathematical toolkit, 95
LATEX mark-up, 86

¬ (not), see ¬ (negation)
. . (numeric range)

in mathematical metalanguage, 7
in mathematical toolkit, 106
LATEX mark-up, 87

1 (operator glue), 41
∗ (optional decoration metavariable)

in metalanguage, 10
[] (optionality)

in syntactic metalanguage, 3
∨ (or), see ∨ (disjunction)

! (output stroke)
character, 21
convention, 174

() (parentheses)
characters, 21
expression, see parenthesized expression
in mathematical metalanguage, 4
in syntactic metalanguage, 3
predicate, see parenthesized predicate
7→ (partial functions)

character, 23
in mathematical metalanguage, 9
in mathematical toolkit, 101
LATEX mark-up, 87
7� (partial injections)

character, 23
in mathematical toolkit, 101
LATEX mark-up, 87
7→→ (partial surjections)

character, 23
in mathematical toolkit, 101
LATEX mark-up, 87

⊂ (proper subset)
character, 23
in mathematical toolkit, 96
LATEX mark-up, 86

B (range restriction)
character, 23
in mathematical toolkit, 99
LATEX mark-up, 86

178 c©ISO/IEC 2002—All rights reserved

Index ISO/IEC 13568:2002(E)

−B (range subtraction)
character, 23
in mathematical toolkit, 100
LATEX mark-up, 86

∗ (reflexive transitive closure)
in mathematical toolkit, 101
LATEX mark-up, 86

o
9 (relational composition)

character, 23
in mathematical metalanguage, 8
in mathematical toolkit, 99
LATEX mark-up, 86

(| |) (relational image)
characters, 23
in mathematical metalanguage, 8
in mathematical toolkit, 100
LATEX mark-up, 86

∼ (relational inversion)
character, 23
in mathematical toolkit, 100
LATEX mark-up, 86

⊕ (relational overriding)
character, 23
in mathematical metalanguage, 8
in mathematical toolkit, 100
LATEX mark-up, 86

↔ (relations)
character, 23
in mathematical toolkit, 94
LATEX mark-up, 86

{ } (repetition)
in syntactic metalanguage, 3

o
9 (schema composition)

character, 22
expression, see schema composition expression
LATEX mark-up, 84
lexis, 28

⇔ (schema equivalence)
expression, see schema equivalence expression

\ (schema hiding)
character, 22
expression, see schema hiding expression
LATEX mark-up, 84
lexis, 28

⇒ (schema implication)
expression, see schema implication expression

>> (schema piping)
character, 22
expression, see schema piping expression
LATEX mark-up, 84
lexis, 28

� (schema projection)
character, 22

expression, see schema projection expression
LATEX mark-up, 84
lexis, 28

/ (schema renaming)
character, 22
expression, see schema renaming expression
lexis, 28

Λ (section environment metavariable)
in mathematical metalanguage, 12

δ (section environment variable)
in mathematical metalanguage, 12

Γ (section-type environment metavariable)
in mathematical metalanguage, 12

γ (section-type environment variable)
in mathematical metalanguage, 12

[[]] (semantic relations)
in mathematical metalanguage, 13

; (semicolon)
character, 22
lexis, 28

〈 , , 〉 (sequence brackets)
characters, 24
in mathematical metalanguage, 9
in mathematical toolkit, 108
LATEX mark-up, 87

{ | • } (set comprehension)
expression, see set comprehension expression
in mathematical metalanguage, 6

\ (set difference)
character, 23
in mathematical metalanguage, 6
in mathematical toolkit, 96
LATEX mark-up, 86

{ , , } (set extension)
characters, 21
expression, see set extension expression
in mathematical metalanguage, 6
LATEX mark-up, 83

∩ (set intersection)
character, 23
in mathematical metalanguage, 6
in mathematical toolkit, 96
LATEX mark-up, 86

	 (set symmetric difference)
character, 23
in mathematical toolkit, 97
LATEX mark-up, 86

∪ (set union)
character, 23
in mathematical metalanguage, 6
in mathematical toolkit, 96
LATEX mark-up, 86

Σ (Sigma), see Σ (type environment metavariable)

c©ISO/IEC 2002—All rights reserved 179

ISO/IEC 13568:2002(E) Index

σ (signature metavariable)
in metalanguage, 10

β (signature variable)
in mathematical metalanguage, 12

♠ (spade), see ♠ (generic type name stroke)
• (spot)

character, 22
LATEX mark-up, 84
lexis, 28

∆ (state change)
character, 21
convention, 173
LATEX mark-up, 82

Ξ (state enquiry)
character, 21
convention, 174
LATEX mark-up, 82

↘ (subscript begin)
character, 21
LATEX mark-up, 83

↖ (subscript end)
character, 21
LATEX mark-up, 83

⊆ (subset)
character, 23
in mathematical metalanguage, 6
in mathematical toolkit, 95
LATEX mark-up, 86

− (subtraction)
character, 24
in mathematical toolkit, 104

↗ (superscript begin)
character, 21
LATEX mark-up, 83

↙ (superscript end)
character, 21
LATEX mark-up, 83

′ ′ (terminal)
in syntactic metalanguage, 3

; (terminator)
in syntactic metalanguage, 3

θ (theta)
character, 21
expression, see binding construction expression
LATEX mark-up, 82
lexis, 28

→ (total functions)
character, 23
in mathematical metalanguage, 9
in mathematical toolkit, 95
LATEX mark-up, 86

� (total injections)
character, 23

in mathematical toolkit, 101
LATEX mark-up, 87

→→ (total surjections)
character, 23
in mathematical toolkit, 102
LATEX mark-up, 87

+ (transitive closure)
in mathematical toolkit, 100
LATEX mark-up, 86

(, ,) (tuple extension)
expression, see tuple extension expression
in mathematical metalanguage, 8

. (tuple selection)
expression, see tuple selection expression

` (turnstile), see conjecture paragraph
character, 22
LATEX mark-up, 84

Σ (type environment metavariable)
in mathematical metalanguage, 12

β (type environment variable)
in mathematical metalanguage, 12

τ (type metavariable)
in metalanguage, 10

α (type variable)
in mathematical metalanguage, 12

(underscore)
character, 21
LATEX mark-up, 85
lexis, 28

∃1 | • (unique existential quantification)
expression, see schema unique existential quantifi-

cation expression
in mathematical metalanguage, 5
predicate, see unique existential quantification pred-

icate
∃1 (unique exists)

lexis, 28
∀ | • (universal quantification)

expression, see schema universal quantification ex-
pression

in mathematical metalanguage, 5
predicate, see universal quantification predicate

Ξ (Xi), see Ξ (state enquiry)

A (arithmos)
character, 21
in prelude, 43
LATEX mark-up, 83

a (expression list metavariable)
in metalanguage, 10

ALPHASTR
lexis, 25

annotated syntax, 41

180 c©ISO/IEC 2002—All rights reserved

Index ISO/IEC 13568:2002(E)

anonymous specification
concrete syntax, 31, 113
syntactic transformation, 45, 113

Application
concrete syntax, 35, 143
syntactic transformation, 53, 143

application expression
annotated syntax, 42
concrete syntax, 32, 145
in mathematical metalanguage, 9
semantic transformation, 69, 145
type inference rule, 62, 145

ASCII mark-ups, 79
Assoc

concrete syntax, 33, 125
associativity of operators, 36
AX

lexis, 25
AXCHAR

character, 22
axiomatic description paragraph

annotated syntax, 41
concrete syntax, 31, 116
semantic relation, 73, 116
type inference rule, 58, 116

b (numeral metavariable)
in metalanguage, 10

base section
concrete syntax, 31, 115
syntactic transformation, 45, 115

bibliography, 175
binding, 1
binding construction expression

annotated syntax, 42
concrete syntax, 32, 148
semantic transformation, 69, 149
type inference rule, 62, 148

binding extension expression
annotated syntax, 42
concrete syntax, 32, 155
semantic relation, 75, 155
type inference rule, 62, 155

binding selection expression
annotated syntax, 42
concrete syntax, 32, 147
semantic transformation, 69, 147
type inference rule, 62, 147

BOXCHAR
character, 19

BRACKET
character, 19

Branch

concrete syntax, 31, 120

c (digit metavariable)
in metalanguage, 10

capture, 2
carrier , 57
carrier set, 2
Cartesian product expression

concrete syntax, 32, 142
syntactic transformation, 48, 142

Cartesian product type
annotated syntax, 43
semantic relation, 77

CategoryTemplate
concrete syntax, 33, 125

charac , 40
characterisation rules, 39
characteristic definite description expression

characterisation, 40, 156
concrete syntax, 32, 156

characteristic set comprehension expression
characterisation, 40, 153
concrete syntax, 32, 153

characteristic tuple, 39
chartuple , 39
composition expression, see schema composition expres-

sion
concrete syntax, 30
conditional expression

concrete syntax, 32, 138
in mathematical metalanguage, 5
syntactic transformation, 48, 138

conformance, 15
conjecture paragraph

annotated syntax, 41
concrete syntax, 31, 123
semantic relation, 73, 124
type inference rule, 59, 124

conjunction expression, see schema conjunction expres-
sion

conjunction predicate
annotated syntax, 42
concrete syntax, 31, 129
semantic relation, 15, 74, 129
type inference rule, 60, 129

constraint, 2
conventions for state-based descriptions, 173
conversion, 79

D (paragraph metavariable)
in metalanguage, 10

d (declaration metavariable)
in metalanguage, 10

c©ISO/IEC 2002—All rights reserved 181

ISO/IEC 13568:2002(E) Index

DECIMAL
character, 19

decimal digit value, 20
Declaration

concrete syntax, 33, 156
syntactic transformation, 49, 157

DeclPart
concrete syntax, 33, 156
syntactic transformation, 50, 157

decor
in mathematical metalanguage, 7

decoration expression, see schema decoration expression
DECORWORD

lexis, 25
deductive system, 17
definite description expression

annotated syntax, 42
concrete syntax, 32, 135
semantic relation, 76, 135
type inference rule, 63, 135

DIGIT
character, 19

disjoint
in mathematical metalanguage, 9
in mathematical toolkit, 102
LATEX mark-up, 87

disjunction expression, see schema disjunction expres-
sion

disjunction predicate
concrete syntax, 31, 128
syntactic transformation, 47, 128

div
in mathematical toolkit, 105
LATEX mark-up, 87

dom
in mathematical metalanguage, 8
in mathematical toolkit, 98

e (expression metavariable)
in metalanguage, 10

e-mail mark-up, 89
EL

lexis, 29
ELP

lexis, 29
else

LATEX mark-up, 85
lexis, 27

empty signature
annotated syntax, 43

END
lexis, 25

ENDCHAR

character, 22
environment, 2, 11
equivalence expression, see schema equivalence expres-

sion
equivalence predicate

concrete syntax, 31, 128
syntactic transformation, 47, 128

ER
lexis, 29

ERE
lexis, 29

EREP
lexis, 29

ERP
lexis, 29

ES
lexis, 29

existential quantification expression, see schema exis-
tential quantification expression

existential quantification predicate
concrete syntax, 31, 126
syntactic transformation, 46, 126

expression
annotated syntax, 42
characterisation rules, 40
concrete syntax, 32
semantic relations, 74
semantic transformation rules, 69
syntactic transformation rules, 47
type inference rules, 60

expression list
concrete syntax, 35
syntactic transformation, 55

F (finite subsets)
character, 23
in mathematical metalanguage, 7
in mathematical toolkit, 97
LATEX mark-up, 86

f (free type metavariable)
in metalanguage, 10

F1 (non-empty finite subsets)
in mathematical toolkit, 97

false
lexis, 27

falsity predicate
concrete syntax, 32, 132
syntactic transformation, 47, 132

first
in mathematical metalanguage, 8
in mathematical toolkit, 98

foreword, v
free types paragraph

182 c©ISO/IEC 2002—All rights reserved

Index ISO/IEC 13568:2002(E)

annotated syntax, 41
concrete syntax, 31, 120
semantic transformation, 66, 121
syntactic transformation, 46, 120
type inference rule, 59, 121

Freetype
concrete syntax, 31, 120

front
in mathematical toolkit, 109

function
LATEX mark-up, 85
lexis, 27

function and generic operator application expression
concrete syntax, 32, 143
syntactic transformation, 53, 143

function construction expression
characterisation, 40, 135
concrete syntax, 32, 135
in mathematical metalanguage, 8

function toolkit , 101

g (injection metavariable)
in metalanguage, 10

GENAX
lexis, 25

GENCHAR
character, 22

generic
LATEX mark-up, 85
lexis, 27

generic axiomatic description paragraph
annotated syntax, 41
concrete syntax, 31, 117
semantic relation, 73, 117
type inference rule, 59, 117

generic conjecture paragraph
annotated syntax, 41
concrete syntax, 31, 124
semantic relation, 74, 124
type inference rule, 59, 124

generic horizontal definition paragraph
concrete syntax, 31, 118
syntactic transformation, 46, 118

generic instantiation, 57
generic instantiation expression

annotated syntax, 42
concrete syntax, 32, 150
semantic relation, 75, 151
type inference rule, 61, 150

generic name
concrete syntax, 34, 119
syntactic transformation, 51, 119

generic operator definition paragraph

concrete syntax, 31, 119
syntactic transformation, 51, 119

generic parameter type
annotated syntax, 43
semantic relation, 77

generic schema definition paragraph
concrete syntax, 31, 117
syntactic transformation, 45, 118

generic type
annotated syntax, 43

generic type instantiation, 57
generic type , 12
GenName, see generic name
GENSCH

lexis, 25
GENTYPE, 41
GIVEN, 41
given type

annotated syntax, 43
semantic relation, 77

given types paragraph
annotated syntax, 41
concrete syntax, 31, 115
semantic relation, 73, 115
type inference rule, 58, 115

GREEK
character, 19

h (element metavariable)
in metalanguage, 10

head
in mathematical toolkit, 108

hiding expression, see schema hiding expression
horizontal definition paragraph

concrete syntax, 31, 118
syntactic transformation, 46, 118

I
lexis, 29

i (name metavariable)
in metalanguage, 10

id
in mathematical metalanguage, 8
in mathematical toolkit, 98

if then else
expression, see conditional expression

if
LATEX mark-up, 85
lexis, 27

implication expression, see schema implication expres-
sion

implication predicate
concrete syntax, 31, 128

c©ISO/IEC 2002—All rights reserved 183

ISO/IEC 13568:2002(E) Index

syntactic transformation, 47, 128
infix

in mathematical toolkit, 110
LATEX mark-up, 87

infix function operator application
concrete syntax, 35, 143
syntactic transformation, 54, 144

infix generic name
concrete syntax, 34, 119
syntactic transformation, 52, 120

infix generic operator application
concrete syntax, 35, 143
syntactic transformation, 54, 144

infix operator name
concrete syntax, 34
syntactic transformation, 51

infix relation operator application
concrete syntax, 35, 130
syntactic transformation, 53, 131

InfixApp
concrete syntax, 35, 143
syntactic transformation, 54, 144

InfixGenName, see infix generic name
InfixRel, see infix relation operator application
InfixTemplate

concrete syntax, 33, 125
inheriting section

annotated syntax, 41
concrete syntax, 31, 113
semantic relation

non-prelude, 72, 114
prelude, 72, 114

type inference rule, 56, 113
interpretation, 2
introduction, vi
IP

lexis, 29
iseq (injective sequences)

in mathematical toolkit, 107
LATEX mark-up, 87

ISO/IEC 10646, 1
ISO/IEC 14977, 1
iter (iteration)

in mathematical toolkit, 106

j (name metavariable)
in metalanguage, 10

juxtaposition expression, see application expression

L
lexis, 29

lambda expression, see function construction expression
last

in mathematical toolkit, 108
LATEX mark-up, 79
LATEX mark-up directives, 80
LATIN

character, 19
leftassoc

LATEX mark-up, 85
lexis, 27

let
LATEX mark-up, 85
lexis, 27

let •
expression, see substitution expression

LETTER
character, 19

lexis, 24
looseness

constraints as premises, 17
semantic relations, 17

LP
lexis, 29

mark-ups, 79
mathematical metalanguage, 4
mathematical rendering, 20
mathematical toolkit, 17, 94
max

in mathematical toolkit, 107
membership predicate

annotated syntax, 42
semantic relation, 74, 131
type inference rule, 60, 131

meta identifier character, 3
metalanguage, 2
metalanguages, 3
metavariable, 2, 10, 12
min

in mathematical toolkit, 107
mktuple , 40

mod
in mathematical toolkit, 105
LATEX mark-up, 87

Model , 14
model, 2
mu expression, see definite description expression

N (naturals)
character, 21
in prelude, 43
LATEX mark-up, 83

N1 (strictly positive naturals)
in mathematical toolkit, 105

negation expression, see schema negation expression

184 c©ISO/IEC 2002—All rights reserved

Index ISO/IEC 13568:2002(E)

negation predicate
annotated syntax, 42
concrete syntax, 31, 129
semantic relation, 74, 129
type inference rule, 60, 129

newline conjunction predicate
concrete syntax, 31, 127
syntactic transformation, 46, 127

NL
lexis, 25

NLCHAR
character, 22

nofix function operator application
concrete syntax, 35, 143
syntactic transformation, 55, 145

nofix generic name
concrete syntax, 34, 119
syntactic transformation, 52, 120

nofix generic operator application
concrete syntax, 35, 143
syntactic transformation, 55, 145

nofix operator name
concrete syntax, 34
syntactic transformation, 51

nofix relation operator application
concrete syntax, 35, 130
syntactic transformation, 53, 131

NofixApp
concrete syntax, 35, 143
syntactic transformation, 55, 145

NofixGenName, see nofix generic name
NofixRel, see nofix relation operator application
NofixTemplate

concrete syntax, 33, 125
normative references, 1
number literal expression

concrete syntax, 32, 151
syntactic transformation, 49, 152

number toolkit , 103
number literal 0

in prelude, 43
number literal 1

in prelude, 43
NUMERAL

lexis, 25

operation schema
convention, 173

operator associativity, 36
operator name

concrete syntax, 33
syntactic transformation, 50

operator precedence, 36

operator template paragraph
concrete syntax, 31, 125

OperatorTemplate
concrete syntax, 33, 125

organisation by concrete syntax production, 111
OTHERLETTER

character, 19

P (powerset)
character, 21
in mathematical metalanguage, 7
in prelude, 43
LATEX mark-up, 83
lexis, 27

p (predicate metavariable)
in metalanguage, 10

P1 (non-empty subsets)
in mathematical toolkit, 96

paragraph
annotated syntax, 41
concrete syntax, 31
semantic relations, 73
semantic transformation rules, 66
syntactic transformation rules, 45
type inference rules, 58

parenthesized expression
concrete syntax, 33, 156
syntactic transformation, 49, 156

parenthesized predicate
concrete syntax, 32, 133
syntactic transformation, 47, 133

parents
lexis, 27

partition
in mathematical toolkit, 102
LATEX mark-up, 87

phrase template, 10
piping expression, see schema piping expression
POST

lexis, 29
postfix function operator application

concrete syntax, 35, 143
syntactic transformation, 54, 144

postfix generic name
concrete syntax, 34, 119
syntactic transformation, 52, 119

postfix generic operator application
concrete syntax, 35, 143
syntactic transformation, 54, 144

postfix operator name
concrete syntax, 34
syntactic transformation, 51

postfix relation operator application

c©ISO/IEC 2002—All rights reserved 185

ISO/IEC 13568:2002(E) Index

concrete syntax, 34, 130
syntactic transformation, 53, 130

PostfixApp
concrete syntax, 35, 143
syntactic transformation, 54, 144

PostfixGenName, see postfix generic name
PostfixRel, see postfix relation operator application
PostfixTemplate

concrete syntax, 33, 125
POSTP

lexis, 29
powerset expression

annotated syntax, 42
concrete syntax, 32, 142
semantic relation, 75, 143, 145
type inference rule, 62, 143, 145

powerset type
annotated syntax, 43
semantic relation, 77

PRE
lexis, 29

pre
LATEX mark-up, 85
lexis, 27

Prec
concrete syntax, 33, 125

precedence of operators, 36
precondition expression, see schema precondition ex-

pression
predicate

annotated syntax, 42
concrete syntax, 31
semantic relations, 74
semantic transformation rules, 68
syntactic transformation rules, 46
type inference rules, 60

prefix
in mathematical toolkit, 109
LATEX mark-up, 87

prefix function operator application
concrete syntax, 35, 143
syntactic transformation, 54, 144

prefix generic name
concrete syntax, 34, 119
syntactic transformation, 52, 119

prefix generic operator application
concrete syntax, 35, 143
syntactic transformation, 54, 144

prefix operator name
concrete syntax, 34
syntactic transformation, 51

prefix relation operator application
concrete syntax, 34, 130

syntactic transformation, 52, 130
PrefixApp

concrete syntax, 35, 143
syntactic transformation, 54, 144

PrefixGenName, see prefix generic name
PrefixRel, see prefix relation operator application
PrefixTemplate

concrete syntax, 33, 125
prelude, 43
PREP

lexis, 29
projection expression, see schema projection expression

ran
in mathematical toolkit, 98

reference expression
annotated syntax, 42
concrete syntax, 32, 149
semantic relation, 75, 150
type inference rule, 61, 149

Relation
concrete syntax, 34, 130
syntactic transformation, 52, 130

relation
LATEX mark-up, 85
lexis, 27

relation operator application predicate
concrete syntax, 32, 129
syntactic transformation, 52, 130

relation toolkit , 97
renaming expression, see schema renaming expression
rendering, 79
rev (reverse)

in mathematical toolkit, 108
rightassoc

LATEX mark-up, 85
lexis, 27

s (section metavariable)
in metalanguage, 10

SCH
lexis, 25

SCHCHAR
character, 22

schema, 2
schema composition expression

annotated syntax, 43
concrete syntax, 32, 138
semantic transformation, 70, 139
type inference rule, 64, 139

schema conjunction expression
annotated syntax, 42
concrete syntax, 32, 137

186 c©ISO/IEC 2002—All rights reserved

Index ISO/IEC 13568:2002(E)

semantic relation, 76, 137
type inference rule, 13, 63, 137

schema construction expression
annotated syntax, 42
concrete syntax, 32, 154
semantic relation, 76, 154
syntactic transformation, 49, 154
type inference rule, 63, 154

schema decoration expression
annotated syntax, 43
concrete syntax, 32, 146
semantic transformation, 71, 146
type inference rule, 65, 146

schema definition paragraph
concrete syntax, 31, 116
syntactic transformation, 10, 45, 116

schema disjunction expression
concrete syntax, 32, 137
syntactic transformation, 48, 137

schema equivalence expression
concrete syntax, 32, 136
syntactic transformation, 48, 136

schema existential quantification expression
concrete syntax, 32, 134
syntactic transformation, 47, 134

schema hiding expression
annotated syntax, 42
concrete syntax, 32, 140
semantic transformation, 70, 141
type inference rule, 63, 141

schema implication expression
concrete syntax, 32, 136
syntactic transformation, 48, 136

schema negation expression
annotated syntax, 42
concrete syntax, 32, 138
semantic relation, 76, 138
type inference rule, 63, 138

schema piping expression
annotated syntax, 43
concrete syntax, 32, 139
semantic transformation, 71, 140
type inference rule, 65, 140

schema precondition expression
annotated syntax, 42
concrete syntax, 32, 141
semantic transformation, 70, 142
type inference rule, 64, 142

schema predicate
concrete syntax, 32, 131
syntactic transformation, 47, 132

schema projection expression
concrete syntax, 32, 141

syntactic transformation, 48, 141
schema renaming expression

annotated syntax, 42
concrete syntax, 32, 146
semantic relation, 77, 147
type inference rule, 64, 146

schema text
concrete syntax, 33, 156
syntactic transformation, 49, 50, 157

schema type
annotated syntax, 43
semantic relation, 78

schema unique existential quantification expression
annotated syntax, 42
concrete syntax, 32, 134
semantic transformation, 70, 134
type inference rule, 64, 134

schema universal quantification expression
annotated syntax, 42
concrete syntax, 32, 133
semantic relation, 76, 133
type inference rule, 64, 133

SchemaText, see schema text
scope, 1
scope of a declaration, 2
scope of a mark-up directive, 82
scope rules, 2
second

in mathematical metalanguage, 8
in mathematical toolkit, 98

SectEnv, 12
section

annotated syntax, 41
concrete syntax, 31
lexis, 27
semantic relations, 72
syntactic transformation rules, 45
type inference rules, 56

section type environment
annotated syntax, 43

sectioned specification
annotated syntax, 41
concrete syntax, 31, 112
semantic relation, 72, 112
type inference rule, 56, 112

SectionModels, 14
SectTypeEnv, 12
semantic idioms, 15
semantic relation metalanguage, 13
semantic relations, 13, 71
semantic transformation rules, 66
semantic universe, 2, 13
semicolon conjunction predicate

c©ISO/IEC 2002—All rights reserved 187

ISO/IEC 13568:2002(E) Index

concrete syntax, 31, 127
syntactic transformation, 46, 127

seq (finite sequences)
in mathematical toolkit, 107
LATEX mark-up, 87

seq1 (non-empty finite sequences)
in mathematical toolkit, 107

sequence toolkit , 106
set comprehension expression

annotated syntax, 42
concrete syntax, 32, 153
semantic relation, 75, 153
type inference rule, 61, 153

set extension expression
annotated syntax, 42
concrete syntax, 32, 152
semantic relation, 75, 153
type inference rule, 61, 152

set toolkit , 94
signature, 2

annotated syntax, 43
SPACE

character, 22
SPECIAL

character, 19
specification

annotated syntax, 41
concrete syntax, 31
semantic relations, 72
syntactic transformation rules, 45
type inference rules, 56

spelling, 24
squash

in mathematical toolkit, 109
SR

lexis, 29
SRE

lexis, 29
SREP

lexis, 29
SRP

lexis, 29
SS

lexis, 29
standard toolkit , 110
state schema

convention, 173
STROKE

lexis, 25
STROKECHAR

character, 19
substitution expression

concrete syntax, 32, 136

syntactic transformation, 47, 136
succ

in mathematical toolkit, 103
suffix

in mathematical toolkit, 110
LATEX mark-up, 87

support tools, 17
SYMBOL

character, 19
SYMBOLSTR

lexis, 25
syntactic metalanguage, 3
syntactic transformation rules, 44

t (schema text metavariable)
in metalanguage, 10

tail
in mathematical toolkit, 108

Template
concrete syntax, 33, 125

terms and definitions, 1
then

LATEX mark-up, 85
lexis, 27

theta expression, see binding construction expression
TOKEN

lexis, 25
TOKENSTREAM

lexis, 25
toolkit, see mathematical toolkit
tools, see support tools
transformation metalanguage, 9
true

lexis, 27
truth predicate

annotated syntax, 42
concrete syntax, 32, 132
semantic relation, 74, 132
type inference rule, 60, 132

tuple extension expression
annotated syntax, 42
concrete syntax, 32, 155
semantic relation, 75, 155
type inference rule, 62, 155

tuple selection expression
annotated syntax, 42
concrete syntax, 32, 148
semantic transformation, 69, 148
type inference rule, 62, 148

tutorial, 158
type inference rule metalanguage, 11
type inference rules, 55
type sequent, 11, 12

188 c©ISO/IEC 2002—All rights reserved

Index ISO/IEC 13568:2002(E)

type universe, 2, 12
TypeEnv, 12

UCS, see ISO/IEC 10646
undefinedness, 71
unique existential quantification expression, see schema

unique existential quantification expression
unique existential quantification predicate

annotated syntax, 42
concrete syntax, 31, 126
semantic transformation, 68, 127
type inference rule, 60, 126

universal quantification expression, see schema univer-
sal quantification expression

universal quantification predicate
annotated syntax, 42
concrete syntax, 31, 126
semantic relation, 74, 126
type inference rule, 60, 126

variable construction expression
annotated syntax, 42
semantic relation, 76, 154
type inference rule, 63, 154

W, 14
WORD

lexis, 25
WORDGLUE

character, 19
WORDPART

lexis, 25

Z (integers)
character, 24
in mathematical toolkit, 103
LATEX mark-up, 87

z (specification metavariable)
in metalanguage, 10

Z characters, 18
Z core language, 2
Z1 (non-zero integers)

in mathematical toolkit, 105
ZCHAR

character, 19
%%Zchar

LATEX mark-up, 81
ZED

lexis, 25
ZEDCHAR

character, 22
Zermelo-Fraenkel set theory, 3
ZF set theory, see Zermelo-Fraenkel set theory
%%Zinchar

LATEX mark-up, 81
%%Zinword

LATEX mark-up, 81
%%Zpostchar

LATEX mark-up, 81
%%Zpostword

LATEX mark-up, 81
%%Zprechar

LATEX mark-up, 81
%%Zpreword

LATEX mark-up, 81
%%Zword

LATEX mark-up, 81

c©ISO/IEC 2002—All rights reserved 189

ISO/IEC 13568:2002(E)

ICS 35.060
Price based on 189 pages

© ISO/IEC 2002 – All rights reserved

